Nonequilibrium persistent currents in mesoscopic disordered systems Ph.D. thesis at SISSA

student: Oleg Chalaev supervisor: Vladimir Kravtsov

examination date: 24.10.2003; last renewal 30.03.2009
(See the original version at http://www.sissa.it/cm/thesis/2003/chalaev.ps.gz)

Contents

1 Introduction 2
2 Current-current correlator in equilibrium 3
2.1 General relations . 3
2.2 The short-range diagram. 4
2.3 The long-range diagram . 5
2.4 Charge conservation . 6
2.5 The final result . 7

3 Persistent current in a quasi-onedimensional mesoscopic ring. 9
3.1 Thermodynamic and kinetic parts of a physical quantity . 9
3.2 Thermodynamic persistent current . 10
3.2.1 Calculation of Hartree diagram . 11
3.2.2 The renormalization of the potential in the Cooper channel . 14
3.3 Kinetic part of persistent current . 15
3.3.1 Singlet channel . 16
3.3.2 Triplet channel . 18
3.3.3 Singlet channel in case of a $\delta\left(\vec{r}-\vec{r}^{\prime}\right)$-like interaction . 20
3.4 Result and its discussion . 21
3.5 Discussion . 22
3.6 Conclusions . 23

4 Appendix $\mathbf{2 4}$
4.1 Trace of a thermodynamic current operator . 24
4.2 Density matrix in quasiequilibrium state . 24
4.3 Dephasing in the ring . 25
4.4 Average of a Green's function . 25
4.5 Average of two Green's functions: cooperon and diffuson . 27
4.6 Keldysh technique . 28
4.7 Screening . 29
4.8 Other formulas . 32

The thesis is complementary to my notes, which are available on my homepage [1.

1 Introduction

Quantum effects in a physical system are often effects of interference of electrons. They can be seen if electrons remain coherent in the system, so that the size of the system $L<L_{\phi}$, where L_{ϕ} is the coherence length. The coherence can be destroyed by inelastic processes (electron-electron and electron-phonon interactions), being imune to elastic processes (scattering off impurities). By elastic we mean a proceses conserving energy of an electron.

Consider a system of an intermediate size: $l \ll L \ll L_{\phi}$, where l is the mean free path of an electrons between scattering on impurities. Passing through the system, an electron gets scattered by impurities many times - so called diffusive regime. Still electrons maintain coherence so that we are able to observe beautiful quantum effects [2].

Consider a mesoscopic ring pierced by magnetic flux. Without taking interaction into account it is clear that all physical quantities will depend periodically on magnetic field: in fact, energy levels of such a system are flux-dependent, and the state of the system will be repeated every time an energy level passes through the Fermi level, because under the Fermi level there are still many energy levels left.

Once energy levels become flux dependent, a persistent current 3, 4, arises according to

$$
\vec{j}(\vec{r})=-\frac{\delta \bar{E}}{\delta \vec{A}(\vec{r})}, \quad \bar{E}=\int_{-E_{F}}^{\infty} \mathrm{d} E \nu_{E} f_{T}(E) E=\sum_{n} f_{T}\left(E_{n}\right) E_{n} .
$$

This current does not need electric field to be preserved, it is nonzero also in an equilibrium state.
An interesting part of mesoscopic physics is represented by nonequilibrium systems. Studying them is complicated by the fact that one has to take interaction into account. In fact, without interaction there would be no relaxation to equilibrium; both time directions in the system would be equivalent. The interaction produces relaxation, which is a cause for effects absent in eqilibrium. The study of such effects is the main scope of this thesis.

We study persistent currents in mesoscopic systems in the diffusion regime with periodic boundary condition: 1 . Our main tool in calculations is the disorder averaging technique [5, 6]. We consider an ensemble of many systems (or samples) having the same macroscopic characteristics. Each sample contains impurities that form scattering potential $U(r)$ for electrons; impurities are placed differently in different samples. Using disorder averaging technique [5] [6, we study averages over the ensemble of samples. The potential $U(r)$ is supposed to be delta-correlated:

$$
\begin{equation*}
\left\langle U(\vec{r}) U\left(\vec{r}^{\prime}\right)\right\rangle \stackrel{\mathrm{df}}{=}\left(2 \pi \nu_{0} \tilde{\tau}\right)^{-1} \delta\left(\vec{r}-\vec{r}^{\prime}\right), \tag{1}
\end{equation*}
$$

where $\langle\ldots\rangle$ means averaging over different samples (disorder configurations), $\tilde{\tau}$ is the parameter characterizing the strength of disorder, and ν_{0} is the density of states at the Fermi level. Eq. (1) reflects the assumption that the potential of every single impurity is independent from the others.

The text is divided into three main parts: in section 2 we study current-current corelator in a 2 D system with periodic boundary conditions in magnetic field. The system is assumed to be in equilibrium and the interaction is not taken into account. It is interesting to note, that the anisotropy due to the applied external vector potential is strongly suppressed, so that the result is almost unsensitive to the direction of \vec{A}.

The section 3 is devoted to the persistent current in mesoscopic rings out of equilibrium. At first, the thermodynamic part of the current is studied in section 3.2. Then, its kinetic part is calculated in sec. 3.3. Most part of calculations that alone do not lead to physical conclusions has been put in appendix (section (4). In particular, this includes expressions for cooperon, diffuson and screened Coulomb interaction for the case of energy-dependent density of states.

An important part of this thesis is the program ${ }^{2}$ that strongly facilitates work with diagrams of the disorder averaging technique using Keldysh formalism. Its main function is generation of diagrams, selecting them (according to the loops number and other criteria) and drawing the selected diagrams. This program (written in Mathematica $®$) permitted enormous time savings in our calculations.

[^0]
2 Current-current correlator in equilibrium

added 09.03.2005: In this section we did not include thermal fluctuations into the correlator. See the discussion on p. ?? of [7]. In addition the magnetic field is in-plane, so that we can neglect orbital motion of electrons, which is going to change Hamiltonian's eigensystem, and, consequently, Green's functions. Still I made the calculation for the case of homogeneous vector potential. This approximation is clearly justified for the quasi-onedimensional ring, but it is unclear why it could be used here as well. This was my very first mesoscopic calculation; it remained unpublished because my supervisor there appeared an article with results similar to ours.

Consider two-dimensional disordered mesoscopic system with periodic boundary conditions. An applied magnetic field generates circular persistent current in the system [8. In this section we calculate its second momentum $\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle$ in a two dimensional system with dimensions $L_{x} \times L_{y}$. In equilibrium interaction usually gives small correction to the main contribution of a physical quantity ${ }^{3}$, unless without the interaction the result is zero. Thus we can hope that it is safe to ignore interaction effects here.

The main contribution to the current correlator occurs from the first-loop diagrams in the disrder averaging technique.

2.1 General relations

From A40 and A41 we obtain formula for the current in case of no interaction between electrons:

$$
\begin{gather*}
\vec{j}(\vec{r})=\int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} f_{T}(E) \vec{j}(\vec{r}, E), \quad f_{T}(E)=\frac{1}{1+e^{E / T}}, \tag{2}\\
\vec{j}(\vec{r}, E)=\frac{e}{2 m} \lim _{\vec{r}^{\prime} \rightarrow \vec{r}}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}-2 i e \vec{A}\right)\left[G_{\mathrm{R}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)-G_{\mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)\right], \tag{3}
\end{gather*}
$$

From A18) it follows that without interaction $\left[G_{\mathrm{R}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)-G_{\mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)\right]=0$ for $E<-E_{\mathrm{F}}$ (given that $E=0$ corresponds to the Fermi level), so that the integral in (2) converges.

From (2), follows the expression for the second current moment:

$$
\begin{align*}
&\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle=\frac{e^{2}}{16 \pi^{2} m^{2}} \int_{-\infty}^{\infty} \mathrm{d} E_{1} \mathrm{~d} E_{2} f_{T}\left(E_{1}\right) f_{T}\left(E_{2}\right) \lim _{\substack{\vec{r}_{1}, \vec{r}_{3} \rightarrow \vec{r}^{\prime} \\
\vec{r}_{2}, r_{4} \rightarrow \vec{r}^{\prime}}}\left(\frac{\partial}{\partial r_{1 \alpha}}-\frac{\partial}{\partial r_{3 \alpha}}-2 i e A_{\alpha}\right)\left(\frac{\partial}{\partial r_{2 \beta}}-\frac{\partial}{\partial r_{4 \beta}}-2 i e A_{\beta}\right) \times \tag{4}\\
& \times {\left[\left\langle G_{\mathrm{R}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{r}_{2}, \vec{r}_{4} ; E_{2}\right)\right\rangle+\left\langle G_{\mathrm{A}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{R}}\left(\vec{r}_{2}, \vec{r}_{4} ; E_{2}\right)\right\rangle\right] . }
\end{align*}
$$

The second term in sqare brackets in (4) can be obtained from the first one (and vice versa) by substituting: $\vec{r}_{1} \leftrightarrow \vec{r}_{2}, \vec{r}_{3} \leftrightarrow \vec{r}_{4}$ and $E_{1} \leftrightarrow E_{2}$. This means that it gives the same contribution as the first one.

Within the first-loop approxiamtion $\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle$ is represented by four diagrams: two diagrams with cooperons (drawn in Fig. 1), and the other two with diffusons:

$$
\begin{aligned}
\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle= & \frac{e^{2}}{8 \pi^{2} m^{2}} \int_{-\infty}^{\infty} \mathrm{d} E_{1} \mathrm{~d} E_{2} f_{T}\left(E_{1}\right) f_{T}\left(E_{2}\right) \lim _{\substack{\vec{r}_{1}, \vec{r}_{3} \rightarrow \vec{r} \\
\vec{r}_{2}, \vec{r}_{4} \rightarrow \vec{r}^{\prime}}}\left(\frac{\partial}{\partial r_{1 \alpha}}-\frac{\partial}{\partial r_{3 \alpha}}\right) \\
& {\left[\left(\frac{\partial}{\partial r_{2 \beta}}-\frac{\partial}{\partial r_{4 \beta}}\right)\left\langle G_{\mathrm{R}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{r}_{2}, \vec{r}_{4} ; E_{2}\right)\right\rangle_{C}+\left(\frac{\partial}{\partial r_{4 \beta}}-\frac{\partial}{\partial r_{2 \beta}}\right)\left\langle G_{\mathrm{R}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{r}_{4}, \vec{r}_{2} ; E_{2}\right)\right\rangle_{D}\right], }
\end{aligned}
$$

where $\langle\ldots\rangle_{C}$ and $\langle\ldots\rangle_{D}$ denote contributions from cooperon and diffuson diagrams respectively.
In case of $\vec{A}=0$ diffuson diagrams cancel cooperon ones, due to the reason that

$$
\begin{equation*}
\left\langle G_{\mathrm{R}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{r}_{2}, \vec{r}_{4} ; E_{2}\right)\right\rangle_{C}=\left\langle G_{\mathrm{R}}\left(\vec{r}_{1}, \vec{r}_{3} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{r}_{4}, \vec{r}_{2} ; E_{2}\right)\right\rangle_{D} \tag{5}
\end{equation*}
$$

It is evident that the second diagram (i.e. b and d in Fig. 1) should give significant contribution to long-range correlations, while the first (a and c) does not.

In the following two sections we calculate diagrams in Fig. 1 .

[^1]

Figure 1: Two one-loop diagrams for $\left\langle\vec{j}(\vec{r}) \vec{j}\left(\vec{r}^{\prime}\right)\right\rangle$ drawn in two different ways: a) or c) is the short-range diagram, b) or d) is the long-range one.Straight lines denote Green functions; wavy lines denote cooperons.

2.2 The short-range diagram

The short range diagram is drawn in Fig. 11a) and c):

$$
\begin{align*}
&\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{1}=\frac{e^{2}}{8 \pi^{2} m^{2}} \int_{-\infty}^{\infty} \mathrm{d} E \mathrm{~d} \omega f_{T}(E) f_{T}(E-\omega) \int \mathrm{d}^{d} x_{1} \mathrm{~d}^{d} x_{2} C\left(\vec{x}_{1}, \vec{x}_{2} ; \omega\right) \times \\
& {\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right)}{\partial r_{\alpha}} G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)-G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)}{\partial r_{\alpha}}-2 i e A_{\alpha} G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)\right] \times } \\
& {\left[\frac{\partial G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right)}{\partial r_{\beta}^{\prime}} G_{\mathrm{A}}\left(\vec{x}_{4}, \vec{r}^{\prime}\right)-G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right) \frac{\partial G_{\mathrm{A}}\left(\vec{x}_{4}, \vec{r}^{\prime}\right)}{\partial r_{\beta}^{\prime}}-2 i e A_{\beta} G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right) G_{\mathrm{A}}\left(\vec{x}_{4}, \vec{r}^{\prime}\right)\right] } \tag{6}
\end{align*}
$$

where $C\left(\vec{x}_{1}, \vec{x}_{2} ; \omega\right)$ denotes cooperon defined in A29) in coordinate space. All G_{R} and G_{A} depend on energies E and $E-\omega$ respectively.
We have two spatial scales in our diagrams: l and $L, l \ll L$. We are interested in diffusion procceses on scales larger than l; Let us then approximate Hikami box (without cooperon) from the diagram in Fig. 1. (or two square brackets in (6)) with a combination of δ-functions:

$$
\begin{equation*}
K \delta\left(\vec{x}_{2}-\vec{r}\right) \delta\left(\vec{x}_{2}-\vec{r}^{\prime}\right) \delta\left(\vec{r}-\vec{x}_{1}\right) \delta_{\alpha \beta} . \tag{7}
\end{equation*}
$$

There are four ways to write ansatz (7) in this form, but they are all equivalent. To find K, we integrate the square in Fig. 1.) by x_{1} and x_{2} :

$$
\begin{aligned}
K \delta_{\alpha \beta} \delta\left(\vec{r}-\vec{r}^{\prime}\right)=\int \mathrm{d}^{d} x_{1} \mathrm{~d}^{d} x_{2} & {\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right)}{\partial r_{\alpha}} G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)-G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)}{\partial r_{\alpha}}-2 i e A_{\alpha} G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{r}\right)\right] \times } \\
\times & {\left[\frac{\partial G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{1}\right)}{\partial r_{\beta}^{\prime}} G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)-G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{1}\right) \frac{\partial G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)}{\partial r_{\beta}^{\prime}}-2 i e A_{\beta} G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{1}\right) G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)\right] }
\end{aligned}
$$

or, in momentum representation:

$$
\begin{align*}
& \int \frac{\mathrm{d}^{d} p_{1} \mathrm{~d}^{d} p_{2}}{(2 \pi)^{2 d}}\left(\vec{p}_{1}+\vec{p}_{2}\right)_{\alpha \beta} \exp \left[i\left(\vec{r}-\vec{r}^{\prime}\right)\left(\vec{p}_{1}-\vec{p}_{2}\right)\right] G_{\mathrm{R}}\left(p_{1}\right) G_{\mathrm{R}}\left(p_{2}\right) G_{\mathrm{A}}\left(p_{1}\right) G_{\mathrm{A}}\left(p_{2}\right)= \\
& \quad=2 \delta_{l}\left(\vec{r}-\vec{r}^{\prime}\right) \int \frac{\mathrm{d}^{d} p}{(2 \pi)^{d}} p_{\alpha} p_{\beta} G_{\mathrm{R}}^{2}(p) G_{\mathrm{A}}^{2}(p)=\frac{8}{d} \pi \nu \tau^{3} p_{F}^{2} \delta_{\alpha \beta} \delta_{l}\left(\vec{r}-\vec{r}^{\prime}\right), \quad d=2 \tag{8}
\end{align*}
$$

so that $K=8 \pi \nu \tau^{3} p_{F}^{2} / d$. In $8 \delta_{l}$ stands for the approximate delta-function $\delta_{l}(R)=\int_{-1 / l}^{1 / l} e^{i k R} \mathrm{~d} k$. Within the diffusion approximation, we can substitute δ_{l} with δ.

In section 4.1 we demonstrate that in (6) one can shift $f_{T}(E)$ by arbitary constant; so, instead of Fermi distribution, we substitute $f_{T}(E)=-\frac{1}{2} \tanh \frac{E}{2 T}$.

After applying ansatz (7), only energy integration remains in (6), and the shortest form it has in time representation:

$$
\begin{align*}
\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{1} & =K \delta_{\alpha \beta} \delta\left(\vec{r}-\vec{r}^{\prime}\right) \int_{0}^{\infty} \mathrm{d} t g(t) C(\vec{r} \vec{r} ; t) \\
g_{T}(t) & =\int_{0}^{\infty} \mathrm{d} E \tanh \frac{E}{2 T} \cdot \sin (E t) e^{-\varepsilon t}, \quad \varepsilon=+0, \quad g_{0}(t)=1 / t \tag{9}
\end{align*}
$$

where $C(\vec{r} \vec{r} ; t)$ is the cooperon A32 in coordinate representation. Later we omit index T in $g_{T}(t)$.

Using A75), let us rewrite the result (9) in terms of Poisson harmonics:

$$
C(\vec{r} r ; t)=\frac{1}{2 \pi \nu \tau^{2} L_{x} L_{y}} \sum_{\vec{p}_{k}} \exp \left[-\left(\vec{p}_{k}-2 e \vec{A}\right)^{2} D t\right]=\sum_{\vec{m}} \cos \left[2 \pi \vec{m} \frac{\vec{\varphi}}{\varphi_{0}}\right] \frac{1}{8 \pi^{2} \nu D t \tau^{2}} \exp \left[-\frac{y^{2}}{4 D t}\right]
$$

where we used notations:

$$
\begin{equation*}
\vec{y}=\left(L_{x} m_{x}, L_{y} m_{y}\right)^{T}, \quad \vec{\varphi}=\left(L_{x} A_{x}, L_{y} A_{y}\right)^{T} \tag{10}
\end{equation*}
$$

Finally we arrive to an expression

$$
\begin{equation*}
\left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{1}=\sum_{\vec{m}} \cos \left[2 \pi \vec{m} \frac{\vec{\varphi}}{\varphi_{0}}\right] \delta\left(\vec{r}-\vec{r}^{\prime}\right) \frac{e^{2}}{(2 \pi)^{3}} \delta_{\alpha \beta} \int_{0}^{\infty} \frac{\mathrm{d} t}{t} g^{2}(t) \exp \left[-\frac{y^{2}}{4 D t}\right] \tag{11}
\end{equation*}
$$

Note that the result (11) is invariant with respect to rotation of $\vec{\varphi} / \varphi_{0}$ by $\pi / 2$. The contribution from the long range diagram (see the next section) does not posess such invariance.

2.3 The long-range diagram

The long-range diagram is drawn in Fig. 10) and d). Its contribution to the current correlator is equal to

$$
\begin{align*}
& \left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{2}=\frac{e^{2}}{8 \pi^{2} m^{2}} \int_{-\infty}^{\infty} \mathrm{d} E \mathrm{~d} \omega f_{T}(E) f_{T}(E-\omega) \times \\
& \quad \int \mathrm{d}^{d} x_{1 \ldots 4} C\left(\vec{x}_{1} \vec{x}_{2} ; E_{1}\right) C\left(\vec{x}_{3} \vec{x}_{4} ; E_{1}\right) G_{\mathrm{A}}\left(\vec{x}_{4}, \vec{x}_{1}\right) G_{\mathrm{R}}\left(\vec{x}_{2}, \vec{x}_{3}\right) \times \\
& \quad\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right)}{\partial r_{\alpha}} G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)-G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)}{\partial r_{\alpha}}-2 i e A_{\alpha} G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)\right] \times \\
& \quad\left[\frac{\partial G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right)}{\partial r_{\beta}^{\prime}} G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)-G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right) \frac{\partial G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)}{\partial r_{\beta}^{\prime}}-2 i e A_{\beta} G_{\mathrm{A}}\left(\vec{r}^{\prime}, \vec{x}_{3}\right) G_{\mathrm{A}}\left(\vec{x}_{2}, \vec{r}^{\prime}\right)\right] . \tag{12}
\end{align*}
$$

Like we did it before, in (12) we shift $f_{T}\left(E_{12}\right)$ by $\frac{1}{2}$, so that instead of Fermi distribution, we assume $f_{T}(E)=-\frac{1}{2} \tanh \frac{E}{2 T}$. All G_{R} and G_{A} have energy E and $E-\omega$ correspondingly. In 12 Green functions and cooperon self energies are in the coordinate-energy representation. It is more convenient to work in momentum-time representation.

In analogy with what has been done in case of the short-range diagram, let us write approximate expressions for the triangulars with a combination of δ - functions:

$$
\begin{align*}
& G_{\mathrm{A}}\left(\vec{x}_{4}, \vec{x}_{1}\right)\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right)}{\partial r_{\alpha}} G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)-G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)}{\partial r_{\alpha}}-\right. \\
& \left.\quad-2 i e A_{\alpha} G_{\mathrm{R}}\left(\vec{r}, \vec{x}_{1}\right) G_{\mathrm{R}}\left(\vec{x}_{4}, \vec{r}\right)\right] e^{2 i \vec{A}\left(\vec{x}_{4}-\vec{x}_{1}\right)}= \\
& \quad Z \delta\left(\vec{r}-\vec{x}_{1}\right) \delta\left(\vec{x}_{4}-\vec{r}\right)+J_{\alpha} \frac{\partial \delta\left(\vec{r}-\vec{x}_{1}\right)}{\partial r_{\alpha}} \delta\left(\vec{x}_{4}-\vec{r}\right)-S_{\alpha} \delta\left(\vec{r}-\vec{x}_{1}\right) \frac{\partial \delta\left(\vec{x}_{4}-\vec{r}\right)}{\partial r_{\alpha}} . \tag{13}
\end{align*}
$$

One can see that $Z=0$.
For the left triangular in Fig. 1d we have:

$$
\begin{align*}
& J_{\alpha}=-\int \mathrm{d}^{2} r_{1} \mathrm{~d}^{2} r_{2} G_{\mathrm{A}}\left(\vec{r}_{1}+\vec{r}_{2}\right) r_{1 \alpha}\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}_{1}\right)}{\partial r_{1 \alpha}} G_{\mathrm{R}}\left(\vec{r}_{2}\right)+G_{\mathrm{R}}\left(\vec{r}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{r}_{2}\right)}{\partial r_{2 \alpha}}\right]= \\
& S_{\alpha}=-\int \mathrm{d}^{2} r_{1} \mathrm{~d}^{2} r_{2} G_{\mathrm{A}}\left(\vec{r}_{1}+\vec{r}_{2}\right) r_{2 \alpha}\left[\frac{\partial G_{\mathrm{R}}\left(\vec{r}_{1}\right)}{\partial r_{1 \alpha}} G_{\mathrm{R}}\left(\vec{r}_{2}\right)+G_{\mathrm{R}}\left(\vec{r}_{1}\right) \frac{\partial G_{\mathrm{R}}\left(\vec{r}_{2}\right)}{\partial r_{2 \alpha}}\right] \tag{14}
\end{align*}
$$

The expression for the right triangular in Fig. 1 p can be obtained from 14 by substituting $\alpha \rightarrow \beta$, then G_{R} by G_{A} and vice versa. It is easier to calculate (14) in momentum representation. One can see that $J_{\alpha}=S_{\alpha}$ and they do not depend on α, because

$$
\begin{aligned}
\int \mathrm{d}^{d} r_{1} \mathrm{~d}^{d} r_{2} G_{\mathrm{A}}\left(r_{1}+r_{2}\right) \frac{\partial G_{\mathrm{R}}\left(r_{2}\right)}{\partial r_{2 \alpha}} & G_{\mathrm{R}}\left(r_{1}\right) r_{2 \alpha} \int \mathrm{~d}^{d} r_{1} \mathrm{~d}^{d} r_{2} G_{\mathrm{A}}\left(r_{1}+r_{2}\right) \frac{\partial G_{\mathrm{R}}\left(r_{2}\right)}{\partial r_{2 \alpha}} G_{\mathrm{R}}\left(r_{1}\right) r_{1 \alpha}= \\
& -\int \frac{\mathrm{d}^{d} p}{(2 \pi)^{d}} G_{\mathrm{A}}(\vec{p}) p_{\alpha} G_{\mathrm{R}}(\vec{p}) \frac{\partial G_{\mathrm{R}}(\vec{p})}{\partial p_{\alpha}}=\frac{2 \pi \nu \tau^{3} p_{F}^{2}}{m d}, \quad d=2
\end{aligned}
$$

so that $J_{\alpha}=S_{\alpha}=-4 \pi \nu \tau^{2} p_{F} l / d \equiv J$.

Like in sec. 2.2, let us switch to time representation:

$$
\begin{align*}
& \left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{2}=J^{2} \frac{e^{2}}{8 \pi^{2} m^{2}} \int_{0}^{\infty} \mathrm{d} t_{1} \mathrm{~d} t_{3} g^{2}\left(t_{1}+t_{3}\right) \lim _{\substack{\vec{x}_{1}, \vec{x}_{4} \rightarrow \vec{r} \\
\vec{x}_{2}, \vec{x}_{3} \rightarrow \vec{r}^{\prime}}}\left(\frac{\partial}{\partial x_{1 \alpha}}-\frac{\partial}{\partial x_{4 \alpha}}\right) \times \\
& \quad\left(\frac{\partial}{\partial x_{3 \beta}}-\frac{\partial}{\partial x_{2 \beta}}\right) \exp \left[-2 i e \vec{A}\left(\vec{x}_{1}-\vec{x}_{2}+\vec{x}_{3}-\vec{x}_{4}\right)\right] C\left(\vec{x}_{1} \vec{x}_{2} ; t_{1}\right) C\left(\vec{x}_{3} \vec{x}_{4} ; t_{3}\right) \tag{15}
\end{align*}
$$

where $C\left(\vec{x}_{1} \vec{x}_{2} ; t_{1}\right)$ and $C\left(\vec{x}_{3} \vec{x}_{4} ; t_{3}\right)$ are cooperons A32) in coordinate-time representation.
Then let us rewrite 15 in momentum-time representation:

$$
\begin{align*}
& \exp \left[-2 i e \vec{A}\left(\vec{x}_{1}-\vec{x}_{2}+\vec{x}_{3}-\vec{x}_{4}\right)\right] C\left(\vec{x}_{1} \vec{x}_{2} ; t_{1}\right) C\left(\vec{x}_{3} \vec{x}_{4} ; t_{3}\right)= \\
& \quad \sum_{\vec{q}_{n 1}, \vec{q}_{n 2}} \exp \left[i \vec{q}_{n 1}\left(\vec{x}_{1}-\vec{x}_{2}\right)-2 i e \vec{A}\left(\vec{x}_{1}-\vec{x}_{2}\right)\right] \exp \left[i \vec{q}_{n 2}\left(\vec{x}_{3}-\vec{x}_{4}\right)-2 i e \vec{A}\left(\vec{x}_{3}-\vec{x}_{4}\right)\right] \times \\
& \quad\left(\frac{1}{2 \pi \nu \tau^{2}}\right)^{2} \frac{1}{\left(L_{x} L_{y}\right)^{2}} \exp \left[-\left(\vec{q}_{n 1}-2 e \vec{A}\right)^{2} D t_{1}\right] \exp \left[-\left(\vec{q}_{n 2}-2 e \vec{A}\right)^{2} D t_{3}\right] . \tag{16}
\end{align*}
$$

Inserting 16 into 15 and making substitutions $\vec{R}_{1}=\vec{x}_{1}-\vec{x}_{2}, \vec{R}_{2}=\vec{x}_{4}-\vec{x}_{3}, \vec{R}=\vec{r}-\vec{r}^{\prime}$ and then $\vec{q}_{n}=\vec{q}_{n 1}-\vec{q}_{n 2}, \vec{q}_{n 1} \rightarrow \vec{p}_{k}$, one obtains the spatial structure of 15 (that is, its part after $g^{2}\left(t_{1}+t_{3}\right)$):

$$
\begin{gather*}
-\frac{1}{\left(L_{x} L_{y}\right)^{2}} \frac{1}{\left(2 \pi \nu \tau^{2}\right)^{2}} \sum_{\vec{q}_{n}} \exp \left[i \vec{R} \vec{q}_{n}\right] \times \sum_{\vec{p}_{k}}\left(2 \vec{p}_{k}-4 e \vec{A}-\vec{q}_{n}\right)_{\alpha \beta} \times \\
\exp \left[-\left(\vec{p}_{k}-2 e \vec{A}\right)^{2} D t_{1}-\left(\vec{p}_{k}-2 e \vec{A}-\vec{q}_{n}\right)^{2} D t_{3}\right] \tag{17}
\end{gather*}
$$

where two indices denote diadic: $p_{\alpha \beta} \equiv p_{\alpha} p_{\beta}$.
It is evident that $\left\langle j_{\alpha}(\vec{r}) j_{\alpha}\left(\vec{r}^{\prime}\right)\right\rangle=\left\langle j_{\alpha}\left(\vec{r}^{\prime}\right) j_{\alpha}(\vec{r})\right\rangle$, like that the substitution $\vec{r} \leftrightarrow \vec{r}^{\prime}$ is equivalent to $\vec{A} \rightarrow-\vec{A}$. From these two statements it follows that the correlator should not depend on the sign of \vec{A}. One can prove it using the symmetry ${ }^{4}$ in integration by t_{1} and t_{3} and then (after the change of variables from t_{1} and t_{3} to τ_{1} and τ_{2}, see 18) the fact that the integration by τ_{2} is performed in symmetrical limits.

From A75 we deduce that $\sum_{\vec{p}_{k}}$ in 17 is equal to

$$
\frac{L_{x} L_{y}}{(2 \pi)^{2}} \sum_{\vec{m} \in \mathbb{Z}^{2}} \exp \left[2 \pi i \vec{m}\left(\frac{\vec{\varphi}}{-\varphi_{0}}\right)\right] \int \exp (i \vec{y} \vec{p}) f_{\alpha \beta}(\vec{p}) \mathrm{d}^{2} p
$$

where the integral is taken in A76; \vec{y} and $\vec{\varphi}$ are defined in 10 . According to $A 77$, it is convenient to introduce new variables 5

$$
\begin{equation*}
D t_{1}+D t_{3}=\tau_{1}, D t_{1}-D t_{3}=\tau_{2} \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
& \left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{2}=-\frac{1}{L_{x} L_{y}} \frac{e^{2}\left(p_{F} l\right)^{2}}{8 m^{2}} \sum_{\vec{q}_{n}} e^{i \vec{q}_{n}\left(\vec{r}-\vec{r}^{\prime}\right)} \frac{1}{(2 \pi)^{3}} \sum_{\vec{m}} \exp \left[2 \pi i \vec{m} \frac{\vec{\varphi}}{-\varphi_{0}}\right] \times \\
& \quad \int_{0}^{\infty} \frac{\mathrm{d} \tau_{1}}{D} \frac{g^{2}\left(\tau_{1}\right)}{\tau_{1}^{2}} \exp \left[-\frac{\left(\tau_{1} \vec{q}-i \vec{y}\right)^{2}}{4 \tau_{1}}\right] \exp \left[-\frac{y^{2}}{2 \tau_{1}}\right] \times \\
& \quad \int_{-\tau_{1}}^{\tau_{1}} \frac{\mathrm{~d} \tau_{2}}{D}\left(\delta_{\alpha \beta}+\frac{1}{2 \tau_{1}}\left[\tau_{2} \vec{q}-i \vec{y}\right]_{\alpha \beta}\right) \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{y} \vec{q}}{4 \tau_{1}}\right] \tag{19}
\end{align*}
$$

Due to the fact that $\sin \left[\frac{\vec{q} \vec{y}}{2}\right]=0,19$ is invariant with respect to the substitution $\vec{q} \rightarrow-\vec{q}$; thus $e^{i \vec{q}_{n}\left(\vec{r}-\vec{r}^{\prime}\right)}$ in 19 can be changed to $\cos \left[\vec{q}_{n}\left(\vec{r}-\vec{r}^{\prime}\right)\right]$.

2.4 Charge conservation

As a consequence of charge conservation law $\operatorname{div} \vec{j}(\vec{r})=0$, second moment of the current must obey the restriction:

$$
\begin{equation*}
\sum_{\beta=1}^{2} q_{\beta}\left\langle j_{\alpha}(\vec{q}) j_{\beta}(\vec{q})\right\rangle=0, \quad \alpha=1,2 . \tag{20}
\end{equation*}
$$

[^2]Let us see how 20 holds for 11 and 19 . The application of 20 to the last integral $\int_{-\tau_{1}}^{\tau_{1}} \frac{\mathrm{~d} \tau_{2}}{D}$ in 19 leads to an equation:

$$
\begin{equation*}
0=\int_{-\tau_{1}}^{\tau_{1}} \frac{\mathrm{~d} \tau_{2}}{D}\left(\vec{q}+\frac{1}{2 \tau_{1}} \vec{Q} \vec{q} \vec{Q}\right) \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{y} \vec{q}}{4 \tau_{1}}\right]=\frac{2 \tau_{1} \vec{q}}{D} \exp \left[\frac{\tau_{1} q^{2}}{4}\right] \cos \left[\frac{\vec{q} \vec{y}}{2}\right] \tag{21}
\end{equation*}
$$

where $\vec{Q}=\tau_{2} \vec{q}-i \vec{y}$. In 21 we performed integration by parts, using the fact that

$$
\begin{equation*}
\frac{\partial}{\partial \tau_{2}} \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{y} \vec{q}}{\tau_{1}}\right]=\frac{1}{2 \tau_{1}} \vec{q} \vec{Q} \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{y} \vec{q}}{\tau_{1}}\right] \tag{22}
\end{equation*}
$$

From (21) we conclude that the expression (19) for the long-range diagram in Fig. 10) can be divided in two parts. The first part obeys charge conservation law; this means its Fourier \vec{q}-harmonic can be written in the form $f(\vec{q})\left[\delta_{\alpha \beta}-\frac{q_{\alpha} q_{\beta}}{q^{2}}\right]$, where $f(\vec{q})$ is an arbitary scalar function.

The second part can not be proportional to $\delta_{\alpha \beta}$ because then the charge conservation law 20 gets inevitably violated. The only possibility to save the conservation law is to assume that it is proportional to $\frac{q_{\alpha} q_{\beta}}{q^{2}}$; then, together with the contribution of the short-range diagram $\sqrt[11]{ }$, it can form an expression $f^{\mathrm{S}}(\vec{q}) \delta_{\alpha \beta}-f^{\mathrm{L}}(\vec{q}) \frac{q_{\alpha} q_{\beta}}{q^{2}}$, which will ensure charge conservation law 20 , given $f^{S}=f^{\mathrm{L}}$. From (11, 19) and 21 one can see that this is really the case, so that we can rewrite 19 in the form:

$$
\begin{align*}
& \left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle_{2}=-\frac{1}{L_{x} L_{y}} \frac{e^{2}\left(p_{F} l\right)^{2}}{4 m^{2} D^{2}} \frac{1}{(2 \pi)^{3}} \sum_{\vec{q}_{n}} \cos \left[\vec{q}_{n}\left(\vec{r}-\vec{r}^{\prime}\right)\right] \\
& \quad \int_{0}^{\infty} \mathrm{d} \tau_{1} \frac{g^{2}\left(\tau_{1}\right)}{\tau_{1}} \exp \left[-\frac{\left(\tau_{1} \vec{q}-i \vec{y}\right)^{2}}{4 \tau_{1}}\right] \exp \left[-\frac{y^{2}}{2 \tau_{1}}\right] \times \\
& \quad\left\{\left(\delta_{\alpha \beta}-\frac{q_{\alpha} q_{\beta}}{q^{2}}\right) \int_{-\tau_{1}}^{\tau_{1}} \frac{\mathrm{~d} \tau_{2}}{2 \tau_{1}} \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{y} \vec{q}}{4 \tau_{1}}\right]+\frac{q_{\alpha} q_{\beta}}{q^{2}} \exp \left[\frac{\tau_{1} q^{2}}{4}\right] \cos \left[\frac{\vec{y} \vec{q}}{2}\right]\right\} \tag{23}
\end{align*}
$$

2.5 The final result

From (11) and (23) we see that the \vec{q}_{n} harmonic of our correlator has the form

$$
\begin{align*}
& \left\langle j_{\alpha}(\vec{r}) j_{\beta}\left(\vec{r}^{\prime}\right)\right\rangle=\sum_{\vec{m} \neq 0}\left[\cos \left(2 \pi \vec{m} \frac{\vec{\varphi}}{\varphi_{0}}\right)-1\right] \frac{1}{L_{x} L_{y}} \sum_{\vec{q}_{n} \neq 0} \cos \left[\vec{q}_{n}\left(\vec{r}-\vec{r}^{\prime}\right)\right]\left(\delta_{\alpha \beta}-\frac{q_{\alpha} q_{\beta}}{q^{2}}\right) \times \tag{24}\\
& \frac{e^{2}}{(2 \pi)^{3}} \int_{0}^{\infty} \frac{\mathrm{d} t}{t} g^{2}(t) \exp \left[-\frac{y^{2}}{4 D t}\right]\left\{1-\frac{1}{2 t} \int_{-t}^{t} \mathrm{~d} t^{\prime} \exp \left[\frac{D\left(t^{\prime 2}-t^{2}\right) q^{2}-2 i\left(t^{\prime}-t\right) \vec{y} \vec{q}}{4 t}\right]\right\}, \\
& g(t) \equiv g_{T}(t)=\int_{0}^{\infty} \mathrm{d} E \tanh \frac{E}{2 T} \cdot \sin (E t) e^{-\varepsilon t}, \quad \varepsilon=+0, \quad g_{0}(t)=1 / t \\
& \vec{y}=\left(L_{x} m_{x}, L_{y} m_{y}\right)^{T}, \quad \vec{\varphi}=\left(L_{x} A_{x}, L_{y} A_{y}\right)^{T}
\end{align*}
$$

For $T=0$ the second string in (24) can be rewritten as

$$
\begin{equation*}
\frac{e^{2}}{(2 \pi)^{3}} \int_{0}^{\infty} \frac{\mathrm{d} t}{t^{3}} g^{2}(t) \exp \left[-\frac{\tau_{L}}{t}\right] \times\left\{1-\frac{1}{2 t} \int_{-t}^{t} \mathrm{~d} t^{\prime} \exp \left[\frac{t^{\prime 2}-t^{2}}{t \tau_{q}}\right] \exp \left[-2 i\left(\frac{t^{\prime}}{t}-1\right) \frac{\vec{y} \vec{q}}{y q} \frac{\tau_{L q}}{\tau_{q}}\right]\right\} \tag{25}
\end{equation*}
$$

where $\tau_{L}=m^{2} L^{2} / 4 D, \tau_{q}=4 / D q^{2}$, and $\tau_{L q}=\sqrt{\tau_{L} \tau_{q}}=m L / D q$. The integral in curved brackets has asymptotic

$$
\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x \exp \left[\frac{t}{\tau_{q}}\left(x^{2}-1\right)-2 i(x-1) \frac{\vec{y} \vec{q}}{y q} \frac{\tau_{L q}}{\tau_{q}}\right] \sim \frac{t / \tau_{q}}{\left(\frac{t}{\tau_{q}}\right)^{2}+\left(\frac{\vec{y} \vec{q}}{y q} \frac{\tau_{L q}}{\tau_{q}}\right)^{2}}, \quad \frac{t}{\tau_{q}} \gg 1
$$

The integrand in (25) differs from zero for $t \gtrsim \tau_{L}$. One can check that always $\tau_{q}<\tau_{L q}<\tau_{L}$. The higher Poisson (\vec{m}) and Fourier (\vec{q}) harmonics are considered, the stronger these inequalities are, and more isotropic their contribution to the correlator becomes. This is just what we see in Fig. 22 for small distances $\left|\vec{r}-\vec{r}^{\prime}\right| \ll L$, where the higher Fourier harmonics ar important, the correlator is isotropic; in the vicinity of the boundaries $\left|\vec{r}-\vec{r}^{\prime}\right| \lesssim L$ some anisotropy arises.

To conclude, the current correlator depends on the direction of the vector potential, but the dependence is weak, and there is no analytical parameter that controls it. Taking interaction into account can make this dependence more pronounced.

The current correlator was calculated numericaly in [8; no dependence on the direction of \vec{A} was observed when the interaction was neglected. This dependence became eveident once the interaction was switched on. The authors concluded that there exist a transition between the situations with equilibrium and without equilibrium.

On the contraty, we sostain that (numerically) weak dependence on the direction of \vec{A} exists also in the case without the interaction; thus there is no transition, but just a crossover between the system with and without interaction.

(b) 25 Fourier and Poisson harmonics summed.

Figure 2: On the left: current-current correlator in coordinate space, $T=0$. The vector potential is directed along the y axis: $\vec{\varphi} / \varphi_{0}=(0,1 / 3)$. On the right: the difference between correlators calculated for $\vec{\varphi} / \varphi_{0}=(0,1 / 3)$ and $\vec{\varphi} / \varphi_{0}=(1 / 3,0)$. The correlator seem to have the symmetry the quadratic lattice it has been calculated on; the direction of vector potential seems irrelevant. Both center peak and anisotropy become more profound with enlargement of the number of summed harmonics.

3 Persistent current in a quasi-onedimensional mesoscopic ring.

Consider a mesoscopic ring made of impure metal or semiconductor. If it is pierced by static magnetic flux, then persistent current flows along the ring [3, 4]. This current does not require any electric field and is a manifestation of quantum interference effects. The direction and amplitude of the current depends on spatial distribution of impuriries and varies from sample to sample. Given the circumference L of a ring is much larger than the mean path between collisions, the average persistent current is exponentially small [9] in a system without interaction ${ }^{6}$. In equilibrium case it was studied in ref. [10].

The case when the equilibrium is broken by the external ac field has been studied in [11. The external field acted as a direct force acting on an electron system connected to an equilibrium reservoir. This force kept the system out of the equilibrium, while the reservoir maintained stable the energy distribution. Here we consider another type of non-equilibrium steady state. In our case the energy distribution of the reservoir is non-equilibrium, and there is no external ac field acting directly on the electron system.

Out of equilibrium, any physical quantity has two contributions: thermodynamic and kinetic (see the definition below). The kinetic part vanishes in equilibrium. In the considered situation, when there is no external ac force acting on electrons, it also equals zero without taking interaction into account; this is because relaxation becomes its driving force.

During the calculations we consider diagrams in the first order of perturbation theory. In addition, we take into account the renormalization of interaction in the Cooper channel (see sec. 3.2.2) and RPA (see sec. 4.7). More careful approach is described elsewhere (see ref. [12]).

When we perform calculations in momentum space, we calculate three dimensional sums over momentum like $\frac{1}{V} \sum_{\vec{k}}$. In momentum representation, all three components of momentum in the ring are quantized. For simplicity we consider quasi-onedimensional ring, that is, a ring with a crossection $S \ll L^{2}$, where L is the ring's circumference. Then the quantum $2 \pi / L$ of a component of momentum k_{x}, directed along the ring is much smaller than that for other two components k_{y} and k_{z}. Because of this, in three dimensional sums $\frac{1}{V} \sum_{\vec{k}}$, we can sum only over the component of momentum k_{x} along the ring's circumference. In the sums over k_{y} and k_{z}, we can leave only the term with $k_{y}=0$ and $k_{z}=0$; the contribution of the others produces small correction of the order of S / L^{2}.

3.1 Thermodynamic and kinetic parts of a physical quantity

The stability of a non-equilibrium steady state is achieved by putting considered system in a contact with a reservoir - another system large enough so that its characteristics can not be modified by the considered system. The reservoir adds a compensating term into the Neyman equation for the density matrix of the system:

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\rho}}{\mathrm{~d} t}=\left.\frac{\partial \hat{\rho}}{\partial t}\right|_{\mathrm{int}}+\left.\frac{\partial \hat{\rho}}{\partial t}\right|_{\mathrm{ext}}=\frac{i}{\hbar}[\hat{\rho}, \hat{H}]+\left.\frac{\partial \hat{\rho}}{\partial t}\right|_{\mathrm{ext}}=0, \tag{26}
\end{equation*}
$$

where $\left.\frac{\partial \hat{\rho}}{\partial t}\right|_{\text {ext }}$ characterizes the power of the connection of the system to the reservoir, neccesary to maintain nonequilibrium steady state with a given energy distribution.

The average value of an arbitary physical quantity \hat{O} can be written in the form

$$
\begin{equation*}
O=\operatorname{Sp}[\hat{\rho} \hat{O}]=\operatorname{Sp}\left[\hat{\rho}^{\prime} \hat{O}^{\prime}\right]+\operatorname{Sp}\left[\hat{\rho}^{\prime \prime} \hat{O}^{\prime \prime}\right]=O^{\prime}+O^{\prime \prime} \tag{27}
\end{equation*}
$$

where $\hat{\rho}^{\prime}, \hat{O}^{\prime}$ and $\hat{\rho}^{\prime \prime}, \hat{O}^{\prime \prime}$ denote diagonal and off-diagonal parts of matrices $\hat{\rho}, \hat{O}$.
The diagonal part $\hat{\rho}^{\prime}$ of the density matrix $\hat{\rho}$ has the maximal entropy possible for the given energy distribution f_{E} (see the proof in sec. 4.2). With $\hat{\rho}^{\prime}$ one can formally calculate thermodynamic functions like grand thermodynamic potential Ω and use thermodynamic formulas for the calculation of physical quantities. For this reason we call the term $O^{\prime}=\operatorname{Sp}\left[\hat{\rho}^{\prime} \hat{O}^{\prime}\right]$ in 27 thermodynamic one. E.g., for thermodynamic part of the persistent current we have

$$
\begin{equation*}
\vec{j}^{\prime}=\operatorname{Sp}\left[\hat{\rho}^{\prime} \hat{j}^{\prime}\right]=-\frac{\partial \Omega}{\partial \vec{A}}, \tag{28}
\end{equation*}
$$

Ω being the thermodynamic potential.
In equilibrium only diagonal matrix elements of a physical quantity enter into the expression for its average value, and thermodynamic part of a physical quantity is equal to its real value.

The separation of a physical quantity into its thermodynamic and kinetic parts can be formally done in Keldysh technique [13, just like in terms of density matrix 27, Let us demonstrate it for the case of the current density. The current density \vec{j} is expressed in terms of the Keldysh component G_{K} of 2×2 matrix Green function $14=\left(\begin{array}{cc}G_{\mathrm{R}} & G_{\mathrm{K}} \\ 0 & G_{\mathrm{A}}\end{array}\right)$:

$$
\begin{equation*}
\vec{j}=\operatorname{Sp} \hat{\vec{j}} G_{\mathrm{K}}, \tag{29}
\end{equation*}
$$

[^3]where G_{K} can be divided in two parts:
\[

$$
\begin{equation*}
G_{\mathrm{K}}=G_{\mathrm{K}}^{\prime}+G_{\mathrm{K}}^{\prime \prime}, \quad G_{\mathrm{K}}^{\prime}(E)=h_{E}\left[G_{\mathrm{R}}(E)-G_{\mathrm{A}}(E)\right] \tag{30}
\end{equation*}
$$

\]

where $h_{E}=1-2 f_{E}$.
In equilibrium or without interaction $G_{\mathrm{K}}(E)=h_{E}\left[G_{\mathrm{R}}(E)-G_{\mathrm{A}}(E)\right]$ (see A41), so that $G_{\mathrm{K}}^{\prime \prime}=0$ and $G_{\mathrm{K}}=G_{\mathrm{K}}^{\prime}$. Out of equilibrium, the interaction generates off-diagonal elements in density matrix together with corrections to diagonal ones.

Applying the current operator to (30), we see that the current can be divided into the sum of thermodynamic and kinetic contributions:

$$
\begin{equation*}
\vec{j}=\operatorname{Sp} \hat{\vec{j}} G_{\mathrm{K}}=j^{\prime}+j^{\prime \prime} \tag{31}
\end{equation*}
$$

Let us analyze the expressions for j^{\prime} and $j^{\prime \prime}$ in the first order of the perturbation theory in interaction. The correction to G due to the interaction is given by two terms (corresponding to Hartree and Fock diagrams ${ }^{7}$):

$$
\begin{gather*}
\delta G=-\frac{i}{2} \sum_{k k^{\prime}} U_{k k^{\prime}}(0) G(p) \tilde{\gamma}^{k} G(p) \mathrm{Sp}\left[\int \mathrm{~d}^{d} q G(q) \gamma^{k^{\prime}}\right]+\frac{i}{2} \sum_{k k^{\prime}} \int \mathrm{d}^{d} q U_{k k^{\prime}}(q) G(p) \tilde{\gamma}^{k} G(p-q) \gamma^{k^{\prime}} G(p) \tag{32}\\
\gamma_{i k}^{1}=\sigma_{1}^{i k}, \quad \gamma_{i k}^{2}=\delta_{i k}, \quad \tilde{\gamma}_{i k}^{1}=\delta_{i k}, \quad \tilde{\gamma}_{i k}^{2}=\sigma_{1}^{i k} \tag{33}
\end{gather*}
$$

where σ_{1} is the Pauli matrix (??).
From (30) and 31) we obtain the expressions for j^{\prime} and $j^{\prime \prime}$:

$$
\begin{align*}
j^{\prime \prime}= & \frac{1}{2}\left\{(A \mathbf{A R}-R \mathbf{A R})\left[\left(h_{E}-h_{E-\omega}\right) U_{\omega}^{K}-\left(1-h_{E} h_{E-\omega}\right)\left(U_{\omega}^{R}-U_{\omega}^{A}\right)\right]\right\} \tag{34}\\
& j^{\prime}=\frac{1}{2} A\left\{\mathbf{R R}\left(U_{\omega}^{R}-2 U_{0}^{R}\right)\left(1-h_{E} h_{E-\omega}\right)+R \mathbf{A A}\left(U_{\omega}^{A}-2 U_{0}^{A}\right)\left(1-h_{E} h_{E-\omega}\right)\right. \\
& \left.+(R \mathbf{R R}-A \mathbf{A A}) h_{E} U_{\omega}^{K}-\left(1-h_{E} h_{E-\omega}\right)\left[R \mathbf{R R}\left(U_{\omega}^{R}-2 U_{0}^{R}\right)+A \mathbf{A} \mathbf{A}\left(U_{\omega}^{A}-2 U_{0}^{A}\right)\right]\right\},
\end{align*}
$$

In (34), R and A denote G_{R} and G_{A}; bold stands for the position of the current vertex, so that, for example, $A \mathbf{A R} \equiv G_{0}^{A}(E-$ $\omega) G_{0}^{\mathbf{A}}(E) \hat{\vec{j}} G_{0}^{\mathbf{R}}(E)$; the integration over E and ω is assumed. The factors 2 in the expression for $j^{\prime \prime}$ in 34 occured due to the spin trace in Hartree terms. Looking on expressions (34), one notices that in thermodynamic terms, the vertex is placed between Green functions of the same type (both retarded or both advanced), while in kinetic terms it is placed between G_{A} and G_{R}. This is connected with the fact that, according to (28), diagrams for j^{\prime} can be obtained by differentiating diagrams for the thermodynamic potential Ω. The diagrams for Ω do not contain vertices [5]. Taking derivative is equivalent to cutting the Green function line $\left(G_{\mathrm{R}}\right.$ or $\left.G_{\mathrm{A}}\right)$ in two, inserting the vertex in between. It is clear that such procedure can not produce diagrams with a vertex between different two different Green functions.

3.2 Thermodynamic persistent current

The thermodynamic part of the persistent current was calculated in [10] in equilibrium. In this section we recalculate it for more general non-equilibrium case.

The thermodynamic part j^{\prime} of the current is given by (31). It follows from (A40) and (31) that

$$
\begin{align*}
& \vec{j}^{\prime}(\vec{r})=\int \mathrm{d} E f_{T}(E) \vec{j}(\vec{r}, E), \quad f_{T}(E)=\frac{1-h_{E}}{2} \tag{35}\\
& \quad \vec{j}(\vec{r}, E)=\frac{e \hbar}{2 m} \lim _{\vec{r}^{\prime} \rightarrow \vec{r}}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}-2 i e \vec{A}\right)\left[G_{\mathrm{R}}-G_{\mathrm{A}}\right]\left(\vec{r}, \vec{r}^{\prime} ; E\right) \tag{36}
\end{align*}
$$

where $f_{T}(E)$ is the energy distribution function. When Green functions depend only on the difference of their coordinates, 36 simplifies to

$$
\begin{align*}
& \vec{j}(\vec{r}, E)=\vec{j}(E)=i e \hbar \vec{v} \frac{1}{V} \sum_{\vec{p}_{n}}\left[G_{\mathrm{R}}\left(\vec{p}_{n}, E\right)-G_{\mathrm{A}}\left(\vec{p}_{n}, E\right)\right]= \\
& \quad=-\hat{\vec{j}}(\vec{p}) \frac{1}{V} \sum_{\vec{p}_{n}}\left[G_{\mathrm{R}}\left(\vec{p}_{n}, E\right)-G_{\mathrm{A}}\left(\vec{p}_{n}, E\right)\right], \quad \hat{\vec{j}}(\vec{p}) \stackrel{\mathrm{df}}{=}-i \frac{e \hbar}{m} \vec{p} \approx-i e \vec{v} \tag{37}
\end{align*}
$$

In (37) one must insert expressions for diagonal components $G_{\mathrm{R} / \mathrm{A}}$ of matrix Green function G obtained in Keldysh technique (see sec. 4.6.

[^4]

Figure 3: Diagrams for δG_{R} without cooperon and diffuson lines. Thin lines denote Green functions; thick lines stands for interaction.

Figure 4: Diagrams for the current, obtained from fig. 3 by addition of cooperon lines (denoted by wavy lines); the coeficients are: $i h_{E-\omega} U_{\mathrm{R}}(0)$ and $-i h_{E-\omega} U_{\mathrm{R}}(\omega) / 2$. One can note that (given the momentum transfered via the interaction line is large) these diagrams are equivalent. The triangulars are equal to $-4 \pi \nu D \tau^{3} \vec{k} / l$.

From (32) we extract the expression for $\delta G_{\mathrm{R}}-\delta G_{\mathrm{A}}$:

$$
\begin{array}{r}
\delta G_{\mathrm{R}}-\delta G_{\mathrm{A}} \equiv \delta\left(G_{11}-G_{22}\right)=\int \frac{\mathrm{d} \omega}{2 \pi} \int \mathrm{~d} y \mathrm{~d} z\left\{-i G_{\mathrm{A}}^{E}(x, y) G_{\mathrm{A}}^{E}(y, x) G_{\mathrm{A}}^{E^{\prime}}(z, z) h_{E^{\prime}} U_{\mathrm{R} / \mathrm{A}}^{0}(y, z)+\right. \\
i G_{\mathrm{A}}^{E^{\prime}}(z, z) G_{\mathrm{R}}^{E}(x, y) G_{\mathrm{R}}^{E}(y, x) h_{E^{\prime}} U_{\mathrm{R} / \mathrm{A}}^{0}(y, z)-\frac{i}{2} G_{\mathrm{A}}^{E}(x, y) G_{\mathrm{A}}^{E}(z, x) G_{\mathrm{R}}^{E-\omega}(y, z) h_{E-\omega} U_{\mathrm{A}}^{\omega}(y, z)+ \\
\left.\frac{i}{2} G_{\mathrm{A}}(x, y, e) G_{\mathrm{A}}^{E-\omega}(y, z) G_{\mathrm{A}}(z, x, e)\left[h_{E-\omega} U_{\mathrm{A}}^{\omega}(y, z)-U_{\mathrm{K}}^{\omega}(y, z)\right]-\text { c.c. }\right\} \tag{38}
\end{array}
$$

As a result, we obtain four initial diagrams drawn in Fig. 3. Two of them contain only G_{R} or only G_{A} so that one can not insert cooperon or diffuson lines in them. Due to this they can not depend on \vec{A} and thus cannot give any contribution to the current. Then we have 1 Hartree and 1 Fock diagram left, see fig. 3 b) and a).

According to the disorder averaging technique, the most important diagrams are those with the minimal number of loops and maximal number of centers (that is, bunches of Green's functions). In the first loop approximation, the main contribution is given by diagrams of Ambegaokar \& Eckern [10] (Hartree and Fock ones) depicted in Fig. 4.

Looking on the diagrams in Fig. 4, we see that every pair of points in the squares can be connected by a path consisting only of Green function lines. In coordinate space, Green functions A10 decay exponentially: $G_{\mathrm{R} / \mathrm{A}}\left(\vec{r}-\vec{r}^{\prime}\right) \propto \exp \frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{l}$, where mean free path l is the smallest spatial scale of the disorder averaging technique. Thus the diagrams can be significant only when their interaction lines are short-range, or, in other words, when they carry large values of momentum $\gtrsim 1 / l$. Given this, the only difference between diagrams in Fig. 4(a) and 4(b) consists in the factor -2 . As we pointed out before, 2 arises from the spin trace in the Hartree diagram. By application of strong magnetic field, directed along the ring's circumference, one can polarize spins of electrons. Then the spin trace would produce 1 instead of 2, so that Hartree diagram would cancel the Fock one.

3.2.1 Calculation of Hartree diagram

Let us calculate the Hartree diagram; the Fock one is two times smaller and has the opposite sign, so that the final answer will be just half of the Hartree diagram (as it is pointed out in the end of the previous subsection). The Hartree current density is equal to
(see fig. 4)

$$
\begin{align*}
j_{\mathrm{H}}= & \int_{-\infty}^{\infty} \frac{\mathrm{d} E \mathrm{~d} \omega}{(2 \pi)^{2}} f_{E} \frac{1}{V} \sum_{\vec{k}_{n}^{\prime}}(i e v) 2 i \Im i h_{E-\omega} \frac{\Lambda}{\nu}\left(-4 \pi \nu D \tau^{3} \vec{k}^{\prime} / l\right) \frac{(2 \pi \nu \tau)^{2}}{\left(2 \pi \nu \tau^{2}\right)^{2}} \frac{1}{\left(D k_{n}^{\prime 2}-i \omega\right)^{2}}= \\
& \int_{-\infty}^{\infty} \frac{\mathrm{d} E \mathrm{~d} \omega}{(2 \pi)^{2}} f_{E} \frac{1}{V} \sum_{\vec{k}_{n}^{\prime}} 2 e v h_{E-\omega}\left(4 \pi \nu D \tau k^{\prime} / l\right) \frac{\Lambda}{\nu} \Im i \frac{1}{D^{2}\left(k_{n}^{\prime 2}+L_{\omega}^{-2}\right)^{2}} \tag{39}
\end{align*}
$$

where $\sum_{\vec{k}_{n}^{\prime}}$ denotes the sum over $k_{n}^{\prime}=2 \pi n / L-2 e A, n \in \mathbb{Z}$, and

$$
\begin{equation*}
L_{\omega}=\frac{1+i \operatorname{sign} \omega}{\sqrt{2}} \sqrt{\frac{D}{|\omega|}} \tag{40}
\end{equation*}
$$

where $f_{E}=\left(1-h_{E}\right) / 2$ is the energy distribution function. Since the ring is assumed to be quasi-onedimensional, the summation is performed only in one momentum component. Now we introduce Poisson summation:

$$
\begin{gathered}
\frac{1}{V} \sum_{\vec{k}_{n}^{\prime}} \frac{k_{n}^{\prime}}{\left(k_{n}^{\prime 2}+L_{\omega}^{-2}\right)^{2}}=-\frac{1}{S} \sum_{n \in \mathbb{Z}} \exp \left[2 \pi i n \frac{\Phi}{\Phi_{0}}\right] \int \frac{\mathrm{d} k}{2 \pi} \frac{\exp [i k n L] k}{k^{2}+L_{\omega}^{-2}}= \\
\frac{2}{S} \sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] \int \frac{\mathrm{d} k}{2 \pi} \frac{\sin [k n L] k}{\left(k^{2}+L_{\omega}^{-2}\right)^{2}}
\end{gathered}
$$

where the last integral is equal to

$$
\int \frac{\mathrm{d} k}{2 \pi} \frac{\sin [k n L] k}{\left(k^{2}+L_{\omega}^{-2}\right)^{2}}=\frac{L_{\omega} n L}{4} \exp \left[-\frac{n L}{L_{\omega}}\right]
$$

Then the current density can be rewritten as

$$
\begin{gather*}
j_{\mathrm{H}}=\int_{-\infty}^{\infty} \frac{\mathrm{d} E \mathrm{~d} \omega}{(2 \pi)^{2}} f_{E} 8 \pi \nu e v h_{E-\omega} \frac{D \tau}{l} \frac{\Lambda}{\nu D^{2}} \Im i \frac{2}{S} \sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] \frac{L_{\omega} n L}{4} \exp \left[-\frac{n L}{L_{\omega}}\right]= \\
=-\sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] \frac{4 \pi e \Lambda n L}{D S} \Im i \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} f_{E} \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi}\left\{h_{E-\omega} \frac{1+i}{\sqrt{2}} \sqrt{\frac{D}{\omega}} \times\right. \\
\left.\quad \times \exp \left[-n L \frac{1-i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right]+h_{E+\omega} \frac{1-i}{\sqrt{2}} \sqrt{\frac{D}{\omega}} \exp \left[-n L \frac{1+i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right]\right\} \tag{41}
\end{gather*}
$$

The real part of curved brackets in 41 is equal to

$$
\begin{align*}
& \Re\{\ldots\}=\sqrt{\frac{D}{2 \omega}} \exp \left[-\frac{n L}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right]\left(h_{E-\omega}+h_{E+\omega}\right)\left[\cos \left(\frac{n L}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right)-\sin \left(\frac{n L}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right)\right]= \\
&=\left(h_{E-\omega}+h_{E+\omega}\right) \sqrt{\frac{D}{2 \omega}}(\Re+\Im) \exp \left[-n L \frac{1+i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right] \tag{42}
\end{align*}
$$

In order to avoid the divergence of $\int \mathrm{d} E$, we have to complete the coefficient of the diagram with terms that are equal to zero due to the analytic properties of the diagram. The divergence of $\int \mathrm{d} E$ occurs due to the violation of the assumptions of the diffusion approximation. The completion the diagrams coefficient just provides the convergence of $\int \mathrm{d} E$ on the values of $E \ll 1 / \tau$, when the dependence of the Hikami box on E can be neglected.

In case of diagrams in Fig. 4 we can change their coefficient from $i h_{E-\omega} U_{\mathrm{R}}(0)$ and $-i h_{E-\omega} U_{\mathrm{R}}(\omega) / 2$ to $i\left(h_{E-\omega}-1\right) U_{\mathrm{R}}(0)$ and $i\left(1-h_{E-\omega}\right) U_{\mathrm{R}}(\omega) / 2$. This will secure convergence of $\int \mathrm{d} E$. As a consequence, in our expressions $\int \mathrm{d} E f_{E}\left(h_{E-\omega}+h_{E+\omega}\right)$ gets substituted with ${ }^{8}$

$$
\begin{equation*}
\frac{1}{2} \int \mathrm{~d} E\left[\left(1-h_{E} h_{E-\omega}\right)+\left(1-h_{E} h_{E+\omega}\right)+\left(h_{E-\omega}+h_{E+\omega}-2 h_{E}\right)\right]=4 \tilde{T}(\omega) \tag{43}
\end{equation*}
$$

where $\tilde{T}(\omega)$ is defined as follows:

$$
\begin{equation*}
\tilde{T}(\omega)=\tilde{T}(-\omega)=\frac{1}{4} \int_{-\infty}^{\infty} \mathrm{d} E\left(1-h_{E} h_{E-\omega}\right) \tag{44}
\end{equation*}
$$

where $\tilde{T} \equiv \tilde{T}(0)$ we call the effective temperature. In equilibrium $T(\omega)=\frac{\omega}{2} \operatorname{coth} \frac{\omega}{2 T} \underset{\omega \rightarrow 0}{\longrightarrow} T$, where T is the usual temperature.

[^5]

Figure 5: A way to sostain non-equilibrium steady state in a mesoscopic ring: an experimental installation.

Figure 6: Simplified f_{E} dependence.

To obtain the net current, we multiply (41) by the ring's crossection S :

$$
\begin{equation*}
I_{\mathrm{H}}=j_{\mathrm{H}} S=-\sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] \frac{8 e \Lambda n L}{D} \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{T}(\omega) \sqrt{\frac{D}{2 \omega}}(\Re+\Im) \exp \left[-n L \frac{1+i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right] \tag{45}
\end{equation*}
$$

Remmembering the fact, that the contribution of the Fock diagram in Fig. 4(b) is twice smaller than that for the Hartree diagram 45) and comes with an opposite sign, we write the final result for the thermodynamic component of the net current along the ring:

$$
\begin{align*}
I^{\prime}= & I_{\mathrm{H}} / 2=\sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] I_{n}^{\prime} \\
& I_{n}^{\prime}=-\frac{4 e \Lambda n L}{D} \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{T}(\omega) \sqrt{\frac{D}{2 \omega}}(\Re+\Im) \exp \left[-n L \frac{1+i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right] \tag{46}
\end{align*}
$$

Eq. (46) gives the current of electrons having arbitary spin projection. Thus the net current is twice larger than the result (46). For similarity with [10], let us perform variable change $\omega \rightarrow z=L \sqrt{\frac{\omega}{2 D}}$. Then we rewrite 46 as follows:

$$
\begin{equation*}
I_{n}^{\prime}=-\frac{4 e \Lambda n}{\pi} \int_{0}^{\infty} \mathrm{d} z \tilde{T}\left(2 z^{2} E_{\mathrm{T}}\right)(\Re+\Im) \exp [-n z(1+i)] \tag{47}
\end{equation*}
$$

In equilibrium, at zero temperature, $\tilde{T}(\omega)=|\omega| / 2$, and $I_{n}^{\prime}=\frac{4 e E_{\mathrm{T}} \Lambda}{\pi n^{2}}$.
Let T be the smallest scale of function $\tilde{T}(\omega)$. In equilibrium T is the temperature. Then $\delta=\sqrt{T / E_{\mathrm{T}}}$ is the smallest scale of function $\tilde{T}\left(2 z^{2} E_{\mathrm{T}}\right)$ in 47 . When δ is large, we can approximate $\tilde{T}\left(2 z^{2} E_{\mathrm{T}}\right)$ with its expansion over z / δ hoping to obtain the asymptotic for the integral. However, these attempts fail because

$$
\forall n \in \mathbb{N}, m \in \mathbb{N} \cup\{0\} \quad \int_{0}^{\infty} \mathrm{d} z z^{4 m}(\Re+\Im) \exp [-n z(1+i)]=0
$$

We conclude that the asymptotic is non-analytic. As it was numericaly shown in [10] for the equilibrium case, it is very similar to exponential.

Let us use model disribution function in Fig. 6 with

$$
\begin{equation*}
h_{E}=\frac{1}{2}\left[\tanh \frac{E+V / 2}{2 T}+\tanh \frac{E-V / 2}{2 T}\right] . \tag{48}
\end{equation*}
$$

The corresponding $\tilde{T}(\omega)$ dependence is plotted in Fig. 7 .
Consider the case when $T \ll E_{\mathrm{T}} \ll V$. When $T \rightarrow 0$, the effective temperature \tilde{T} is equal to $V / 4$, and

$$
\tilde{T}(\omega)=\left\{\begin{array}{r}
\frac{V+|\omega|}{4},|\omega|<V \tag{49}\\
\frac{|\omega|}{2},|\omega| \geq V
\end{array}\right.
$$

and the integral $\int \mathrm{d} z$ in 47 can be divided into 2 parts:

$$
\begin{aligned}
& I_{n}^{\prime}= I_{n}^{(0)^{\prime}}+I_{n}^{\tilde{T}^{\prime}}, \quad I_{n}^{(0)^{\prime}} \gg I_{n}^{\tilde{T}^{\prime}} \\
& I_{n}^{(0)^{\prime}}=-\frac{2 e E_{\mathrm{T}} \Lambda n}{\pi} \int_{0}^{\infty} \mathrm{d} z z^{2}(\Re+\Im) \exp [-n z(1+i)]=\frac{2 e E_{\mathrm{T}} \Lambda}{\pi n^{2}} \\
& I_{n}^{\tilde{T}^{\prime}}=-\frac{2 e E_{\mathrm{T}} \Lambda n}{\pi} \int_{\sqrt{\frac{V}{2 E_{\mathrm{T}}}}}^{\infty} \mathrm{d} z\left(z^{2}-\frac{V}{2 E_{\mathrm{T}}}\right)(\Re+\Im) \exp [-n z(1+i)]
\end{aligned}
$$

Figure 7: The frequency dependence of $\tilde{T}(\omega)$ for nonequilibrium energy distribution of the form 48). When $T=0, \tilde{T}(\omega)$ is given by 49) (on the right).
so that the main contribution to the current is given by $I_{n}^{(0)^{\prime}}$ which does not depend on the largest scale V of the distribution function. Thus we conclude that given $T \ll E_{\mathrm{T}} \ll V$, the thermodynamic part of the persistent current remains finite no matter how much we increase V. This is the illustration of the fact that it is the smallest scale of the distribution function that governs the decay of the thermodynamic current. Here we have a separation of parameters analogous to what happens for the fluctuations of persistent current [15]: the largest scale \tilde{T} of the energy distribution function determines only the prefactor of a function depending on T / E_{T}.

3.2.2 The renormalization of the potential in the Cooper channel

The diagrams in Fig. 4 give origin to imporant series of diagrams shown in Fig. 8, Let us write the expression for the second term of
1)

2)

3)

Figure 8: The renormalization in Cooper channel for the diagram in Fig. 4(a) (Hartree series). Bunches of dashed lines denote cooperons. The interaction lines are supposed to transfer large momentum $\sim p_{\mathrm{F}}$, so that $U_{\mathrm{R} / \mathrm{A}}=\frac{\Lambda}{\nu}$ and $U_{\mathrm{K}}=0$. Here are the parts of coefficients of the diagrams providing the largest contribution: 1): i $\left.\left.h_{E^{\prime}} \frac{\Lambda}{2 \nu} .2\right): \frac{1}{4} h_{E-\omega} h_{E^{\prime}} \frac{\Lambda^{2}}{\nu^{2}} .3\right): \frac{i}{8} h_{E^{\prime}} h_{E^{\prime}+\omega_{1}} h_{E-\omega_{2}} \frac{\Lambda^{3}}{\nu^{3}}$.

Figure 9: Diagrams for the current with the coefficient 53). For every diagram drawn here exists a complex-conjugated one with an opposite sign. a) "Initial" Fock diagram without cooperons and diffusons. b-c) Two first-loop diagrams.
the series, provided by the diagram in Fig. 812):

$$
\begin{equation*}
2 i e v \frac{(2 \pi \nu \tau)^{4}}{\left(2 \pi \nu \tau^{2}\right)^{3}} \int \frac{\mathrm{~d} E \mathrm{~d} E^{\prime}}{(2 \pi)^{2}} \frac{1}{V} \sum_{\vec{k}} \frac{-4 \pi \nu D \tau^{3} \vec{k} / l}{\left[D k^{2}-i\left(E-E^{\prime}\right)\right]^{2}} f_{E} \int \frac{\mathrm{~d} \omega}{2 \pi} \frac{h_{E-\omega} h_{E^{\prime}} \frac{\Lambda^{2}}{4 \nu^{2}}}{D k^{2}-i\left(2 \omega-E+E^{\prime}\right)} \tag{50}
\end{equation*}
$$

If in the last integral we can neglect $D k^{2}$ and $E-E^{\prime}$ with respect to ω, then the difference of 50 from 39 consists in the logarithmic factor:

$$
\begin{equation*}
-i \frac{(2 \pi \nu \tau)^{2}}{2 \pi \nu \tau^{2}} \frac{\Lambda}{2 \nu} \int \frac{\mathrm{~d} \omega}{2 \pi} \frac{h_{E-\omega}}{-2 i \omega}=\frac{\Lambda}{4} \int \mathrm{~d} \omega \frac{h_{E-\omega}}{\omega} \approx-\frac{\Lambda}{2} \int_{\tilde{T}}^{E_{\mathrm{F}}} \frac{\mathrm{~d} \omega}{|\omega|}=-\frac{\Lambda}{2} \log \frac{E_{\mathrm{F}}}{\tilde{T}} \tag{51}
\end{equation*}
$$

where we used the fact that in a wide range of frequencies $\tilde{T}<|\omega|<E_{F}$, the integrant in $51 \mid$ is proportional to $\frac{1}{|\omega|}$. Analogously, for $\tilde{T}<\left|\omega_{12}\right|<E_{F}$ the integrant in the expression for the diagram on fig. 8β) is proportional to $\frac{1}{\left|\omega_{1}\right|} \frac{1}{\left|\omega_{2}\right|}$, which after integration, will result in the factor $\log ^{2} \frac{E_{F}}{\tilde{T}}$ Note that only diagrams drawn on fig. 8 have this property; other diagrams of second and third order in interaction with other combinations of $G_{\mathrm{R} / \mathrm{A}}$ are insignificant.

The series in Fig. 8 can be prolongated; every next diagram with an extra interaction line gains $\log \frac{E_{F}}{\tilde{T}}$, so that [6] instead of summing the entire serles of diagrams in Fig. 8, one can take into account only diagrams in Fig. 4 with an interaction, "corrected" (or renormalized) by the factor

$$
\begin{equation*}
\frac{1}{1+\frac{\Lambda}{2} \log \frac{E_{F}}{\tilde{T}}} \tag{52}
\end{equation*}
$$

This correction is called "the renormalization in the Cooper channel" 9 .

3.3 Kinetic part of persistent current

The first order of perturbation theory in interaction produces usual Hartree and Fock diagrams with expressions given by (32). Only Fock diagram gives non-zero contribution to the kinetic part of persistent current. One has to "dress" it with cooperon and diffuson lines in all possible ways selecting diagrams with the minimal number of loops. Diagrams with one loop are drawn in Fig. 9. Their coefficient

$$
\begin{equation*}
K=\frac{i}{2}\left\{\left(h_{E}-h_{E-\omega}\right) U_{\mathrm{K}}(\omega)-\left(1-h_{E} h_{E-\omega}\right)\left[U_{\mathrm{R}}(\omega)-U_{\mathrm{A}}(\omega)\right]\right\} \tag{53}
\end{equation*}
$$

becomes small if the momentum transfered through the interaction line, is large.
Looking at fig. 9, we see that every pair of points in the first-loop diagrams b) and c) can be connected by a path consisting only of Green function lines. In coordinate space, Green functions A10 decay exponentially: $G_{\mathrm{R} / \mathrm{A}}\left(\vec{r}-\vec{r}^{\prime}\right) \propto \exp \frac{\left|\vec{r}-\vec{r}^{\prime}\right|}{l}$, where mean free path l is the smallest spatial scale of the disorder averaging technique. Thus diagrams b) and c) can be significant only when their interaction lines are short-range, or, in other words, when they carry large values of momentum $\gtrsim 1 / l$. From here we conclude that first-loop diagrams b) and c) in Fig. 9 are insignificant, so that we have to explore the second-loop diagrams.

The calculations presented here were performed for the case of $E_{\mathrm{T}} \ll T<\tilde{T}$. The deviations of the density of states ν_{E} from its value on Fermi level ν_{0} were assumed to be small, $\nu_{E}-\nu_{0} \ll \nu_{0}$. In the second loop most important diagrams can be divided in 3

[^6]groups each corresponding to one of three excitation channels [16. At first we study the singlet channel which is represented by the diagram in Fig. 10 with a coefficient given by 53 .

3.3.1 Singlet channel

Before we proceed with the calulations, let us make a note to section 3.1. There we discussed the division of a physical quantity into thermodynamic and kinetic parts. Two different ways to make this separation were suggested: (i) in terms of density matrix (27) and (ii) in terms of Keldysh component of matrix Green function (30). From (27) it is evident that only off-diagonal elements of an operator of a physical quantity enter into the expression for its kinetic part; if a quantity has diagonal operator, it has zero kinetic part.

We believe that the two definitions and are equivalent. If this is true, then if we substitute $\hat{\vec{j}}$ with any diagonal operator, we should get zero result for $j^{\prime \prime}$ calculated from the second definition 30 . We can demonstrate this for the simpliest case when $\hat{\vec{j}}$ gets substituted by unity operator: $\hat{\vec{j}} \rightarrow \hat{1}$. After this substitution, let us use Lehman representation for $G_{\mathrm{R} / \mathrm{A}}$ on the ends of our diagram (before the averaging). Together with its complex-conjugated "sister", the diagram in Fig. 9a) form expression (once the current operator is substituted with 1):

$$
\begin{equation*}
\int \mathrm{d} x \mathrm{~d} y \mathrm{~d} z G_{\mathrm{R}}(y, z ; E) G_{\mathrm{A}}(x, y ; E)\left[G_{\mathrm{R}}(z, x, E-\omega)-G_{\mathrm{A}}(z, x, E-\omega)\right] \tag{54}
\end{equation*}
$$

One can see that

$$
\int \mathrm{d} y G_{\mathrm{R}}(x, y) G_{\mathrm{A}}(y, z)=\sum_{\lambda} \frac{\psi_{\lambda}^{*}(x) \psi_{\lambda}(z)}{\left(E-\epsilon_{\lambda}\right)^{2}+\delta^{2}} \propto G_{\mathrm{R}}(x, z)-G_{\mathrm{A}}(x, z)
$$

so that (54) is proportional to

$$
\left[G_{\mathrm{R}}(z, x, E)-G_{\mathrm{A}}(z, x, E)\right]\left[G_{\mathrm{R}}(z, x, E-\omega)-G_{\mathrm{A}}(z, x, E-\omega)\right] .
$$

The last expression is invariant to the transformation $\omega \rightarrow-\omega, E \rightarrow E-\omega$, while the diagram's coefficient 53) changes sign, so that the result is zero.

Figure 10: The simpliest singlet channel diagram for the kinetic part of the current with a coefficient given by 53. Hikami box $=4 \pi i \nu D \tau^{4} \vec{q} / l$.

Let us now proceed with the calculation. First of all, let us evaluate the diagram's coefficient (53). From A48) it follows that in the universal limit (that is, when the screened interaction is independent on the original one)

$$
\begin{equation*}
U_{\mathrm{R} / \mathrm{A}}=\frac{\Pi_{\mathrm{A} / \mathrm{R}}}{\Pi_{\mathrm{R}} \Pi_{\mathrm{A}}}, \quad U_{\mathrm{K}}=-\frac{\Pi_{\mathrm{K}}}{\Pi_{\mathrm{R}} \Pi_{\mathrm{A}}} \tag{55}
\end{equation*}
$$

In expressions for the studied diagram, we have energy integrals by three variables: E, E^{\prime}, and ω, where E^{\prime} denotes the energy integration variable E from sec. 4.7. One can substitute (55) to (53), leaving the denominator evaluated without taking into account ν_{E} - dependence, and thus calculated using simple expressions A58). This is due to the fact that $\Pi_{\mathrm{R}} \Pi_{\mathrm{A}}$ (see A55) is E and E^{\prime} independent, so that in expression for our diagram we can rearrange energy integrals in the manner

$$
\int \mathrm{d} \omega \frac{1}{\Pi_{\mathrm{R}} \Pi_{\mathrm{A}}} \int \mathrm{~d} E \mathrm{~d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right) \ldots
$$

If one neglects ν_{E} - dependence under $\int \mathrm{d} E \mathrm{~d} E^{\prime}, R_{\omega}\left(E, E^{\prime}\right)$ will rest the only quantity depending on E and E^{\prime}; then from (58) we see that $\int \mathrm{d} E \mathrm{~d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right)=0$. So we deduce that the correction to $\Pi_{\mathrm{R}} \Pi_{\mathrm{A}}$ in the denominator of $\left.\sqrt{55}\right)$, due to the dependence of $\nu_{E} \neq$ const, lies out of the considered precesion. With this argument, using A55) and A58), we get:

$$
\begin{align*}
K= & \frac{1}{2 \nu_{0} D_{0} q^{2}} \int_{-\infty}^{\infty} \mathrm{d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right) \frac{\left(D_{0} q^{2}\right)^{2}+\omega^{2}}{\left(D_{E^{\prime}} q^{2}\right)^{2}+\omega^{2}}, \tag{56}\\
& R_{\omega}\left(E, E^{\prime}\right)=\left(h_{E}-h_{E-\omega}\right)\left(1-h_{E^{\prime}} h_{E^{\prime}-\omega}\right)-\left(h_{E^{\prime}}-h_{E^{\prime}-\omega}\right)\left(1-h_{E} h_{E-\omega}\right), \tag{57}\\
& R_{\omega}\left(E, E^{\prime}\right)=-R_{\omega}\left(E^{\prime}, E\right), \quad R_{-\omega}\left(E^{\prime}-\omega, E-\omega\right)=R_{\omega}\left(E, E^{\prime}\right) \tag{58}
\end{align*}
$$

The function $R_{\omega}\left(E, E^{\prime}\right)$ from (57) is the same as in the quantum kinetic equation [14], where it plays a role of a driving force guiding system to equilibrium. This is another illustration of the fact that the contribution we study is given exclusively by offdiagonal elements of both density matrix and current operator.

Using (A50, A54) and A65), we deduce that the contribution to the current from the diagram from fig. 10 is equal to

$$
\begin{gather*}
S \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \frac{\mathrm{~d} \omega}{2 \pi} \frac{i e v l_{E}}{2 \nu_{0} d D_{0}} \times \frac{1}{V} \sum_{\vec{m} \in \mathbb{Z}^{d} \backslash\{\overrightarrow{0}\}} \frac{\vec{q}_{\vec{m}}}{q_{\vec{m}}^{2}} \int_{-\infty}^{\infty} \mathrm{d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right) \frac{\left(D_{0} q_{\overrightarrow{2}}^{2}\right)^{2}+\omega^{2}}{\left(D_{E^{\prime}} q_{\vec{m}}^{2}\right)^{2}+\omega^{2}} \times \\
\frac{1}{D_{E} q_{\vec{m}}^{2}-i \omega} \times \frac{1}{V} \sum_{\vec{n}+\frac{\vec{x}}{-\Phi_{0}} \in \mathbb{Z}^{d}} \frac{1}{D_{E} k_{\vec{n}}^{2}-i \omega} \cdot \frac{1}{D_{E}\left(\vec{k}_{\vec{n}}+\vec{q}_{\vec{m}}\right)^{2}}+\text { c.c. } \tag{59}
\end{gather*}
$$

From (58) we see that (59) equals zero result, if the calculation is performed assuming $\nu=$ const ${ }^{10}$. In order to obtain non-zero result, we thus have to take into account the energy dependence of the density of states.

Let us proceed with calculations for the case of thin quasi-onedimensional ring. Using A75, we notice that from both exponents $\exp [i \ldots]$ that appear there, only their imaginary part $i \sin [\ldots]$ survives, so that

$$
\begin{align*}
j^{(S)} & =-\sum_{n \geq 1} \sin \left[2 \pi n \frac{\Phi}{-\Phi_{0}}\right] I_{n}^{(S)}, \tag{60}\\
& I_{n}^{(S)}=-\int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \frac{e v l_{E}}{\nu_{0} d D_{0}} \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right) \times \\
& \times 2 \Im \frac{1}{L} \sum_{m \geq 1} \frac{1-e^{-n L / L_{\omega}}}{\left(D_{E} q_{m}^{2}-i \omega\right)^{3}} \cdot \frac{\left(D_{0} q_{m}^{2}\right)^{2}+\omega^{2}}{\left(D_{E^{\prime}}^{2} q_{m}^{2}\right)^{2}+\omega^{2}}, \tag{61}
\end{align*}
$$

where L_{ω} is defined in 40).
Consider the contribution of small $\omega \lesssim E_{\mathrm{T}} \ll T$ to $\int \mathrm{d} \omega$.

$$
\begin{equation*}
R_{\omega}\left(E, E^{\prime}\right) \approx \omega\left(\left.\frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0}\right) . \tag{62}
\end{equation*}
$$

As one can see from (63), the expansion of R in (62) over ω / T implies the expansion of the final result over E_{T} / T.

$$
\begin{array}{r}
\Im \int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \omega \frac{1-e^{-n L / L_{\omega}}}{\left(D_{E} q_{m}^{2}-i \omega\right)^{3}} \cdot \frac{D_{0}^{2} q^{4}+\omega^{2}}{D_{E^{\prime}} q^{4}+\omega^{2}}= \\
\frac{D_{0}^{2}-D_{E^{\prime}}^{2}}{\left(D_{E}+D_{E^{\prime}}\right)^{3}} \times \frac{1-e^{-n L|q|} \sqrt{\frac{D_{E^{\prime}}}{D_{E}}}}{2 q^{2}} . \tag{63}
\end{array}
$$

of all the coefficients to the

Let us define

$$
\begin{gather*}
C_{n}=\frac{6}{\pi^{2}} \sum_{m \geq 1} \frac{1-\exp [-2 \pi m n]}{m^{2}}, \quad n>0, \quad C_{\infty}=1 . \tag{64}\\
I_{n}^{(S)}=\left.C_{n} \frac{e}{48 g} \int_{-\infty}^{\infty} \frac{\mathrm{d} E \mathrm{~d} E^{\prime}}{2 \pi} \frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0} \frac{\delta D_{E}}{D_{0}}, \quad g=\nu D S / L . \tag{65}
\end{gather*}
$$

[^7]Let us go ahead with the calculation, substituting in 65

$$
\begin{gather*}
\left.\frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0}=\left(1-h_{E^{\prime}}^{2}\right) h_{E}^{\prime}-\left(\ldots E \leftrightarrow E^{\prime} \ldots\right) \\
\left.\frac{\partial R_{\epsilon}(\delta E, \omega)}{\partial \delta E}\right|_{\delta E=0}=\left(1-h_{\epsilon-\frac{\omega}{2}}^{2}\right) h_{\epsilon+\frac{\omega}{2}}^{\prime}-(\ldots \omega \rightarrow-\omega \ldots), \\
I_{n}^{(S)}=-C_{n} \frac{e}{6 g} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \frac{\delta D_{E}}{D_{0}}\left[\frac{\tilde{T} h_{E}^{\prime}}{2}-\frac{1-h_{E}^{2}}{4}\right]=\frac{e}{6 g \nu_{0}} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \nu_{E}\left[\tilde{T} f_{E}^{\prime}+f_{E}\left(1-f_{E}\right)\right], \tag{66}
\end{gather*}
$$

where $f_{E}=\left(1-h_{E}\right) / 2$ is the energy disribution function.

3.3.2 Triplet channel

In section 3.3.1 at first glance it seems that all the diagrams begining from the first order of the interaction were studied (the interaction line in Fig. 10 stands for complete RPA series). However, because the coefficient for the diagram in Fig. 10 approaches zero for the unscreened Coulomb interaction (for which $U_{\mathrm{R}}=U_{\mathrm{A}}$ and $U_{\mathrm{K}}=0$), the series of diagrams effectively start from the second order of the interaction. That is why one has to search for important dressed diagrams not only in the first but also in the second order of perturbation. In this way one finds out diagrams for triplet and superconducting channels, see fig. 12 .

Let us first of all demonstrate that without taking $\nu(\xi)$ dependence into account the diagrams for supeconducting and triplet channels give zero result (for singlet channel, this is done in sec. 3.3.1). Like the diagram for the singlet channel in Fig. 10 , the coefficients of triplet and superconducting diagrams in Fig. 12 contain $R_{\omega}\left(E, E^{\prime}\right)$ defined in (57). It is convinient now to change variables from $\left\{E, E^{\prime}, \omega\right\}$ to $\{\epsilon, \delta E, \omega\}$, where $\delta E=E-E^{\prime}$ and $\epsilon=\frac{E+E^{\prime}-\omega}{2}$. In these new variables the coefficient $R_{\epsilon}(\delta E, \omega)$ (defined in (57) is odd both in δE and ω :

$$
\begin{equation*}
R_{\epsilon}(\delta E, \omega)=\left(h_{\epsilon+\frac{\delta E+\omega}{2}}-h_{\epsilon+\frac{\delta E-\omega}{2}}\right)\left(1-h_{\epsilon-\frac{\delta E+\omega}{2}} h_{\epsilon-\frac{\delta E-\omega}{2}}\right)-(\delta E \rightarrow-\delta E), \tag{67}
\end{equation*}
$$

so that also the expression for the diagrams in Fig. 12 is to be antisymmetrized in δE and ω. In addition to that antisymmetrization, we must take $2 \Im$ of the diagrams. For constant density of states $\nu(E)=$ const this is equivalent to the following operation: $[(\ldots)-(\ldots \omega \rightarrow-\omega, \delta E \rightarrow-\delta E \ldots)]$. Together with antisymmetric properties of (67) this leads to conclusion that triplet and Cooper diagrams $=0$ in case of constant density of states. This statement is still true if diffusion coefficients depend only on ϵ.

In our energy integrals, energy variables can be confined by three energy scales: $E_{\mathrm{T}} \sim 10 \mathrm{mK}$ or $\tilde{T} \gg T \gg E_{\mathrm{T}}$. Let us name an energy variable "small" if its integral converges on the values of $\lesssim E_{\mathrm{T}}$, and large otherwise. If a variable is small, it has to enter into frequencies of cooperons and/or diffusons; otherwise only the temperature coefficient R of a diagram can provide convergence, and the considered energy variable is condemned to be large (because R, given by $\sqrt[67]{ }$, does not depend on E_{T}).

With this reasoning we conclude that ϵ is surely a large variable, because diffusons and cooperons do not have poles on it. Thus the integration area where both $\delta E, \omega \ll \tilde{T}$ give zero contribution to the result (because in this case $\delta E, \omega \ll \epsilon \lesssim T$ or even $\epsilon \lesssim \tilde{T}$, so that $D_{\epsilon \pm \delta E} \approx D_{\epsilon \pm \omega} \approx D_{\epsilon}$.

Superconducting diagrams from fig. 12 are estimated as $\left(E_{\mathrm{T}} / T\right)^{2}$ smaller then those from the triplet channel. Moreover, the superconducting channel fig. $12(\mathrm{~b})$ acquires additional smallness due to the renormalization of the potential in the Cooper channel (see sec. 3.2.2).

The contribution of the triplet channel to the current is equal to

$$
\begin{aligned}
I= & S \frac{1}{V} \sum_{q} \int \frac{\mathrm{~d} E \mathrm{~d} E^{\prime} \mathrm{d} \omega}{(2 \pi)^{3}} 2 \Re\left(-2 \pi i e \nu_{E-\omega} D_{E} q\right) \frac{\Lambda^{2}}{\nu_{0}^{2}} \times \\
& \times \frac{1}{D_{E} q^{2}+i \delta E}\left[\frac{1}{D_{E-\omega} q^{2}+i \delta E}+\text { c.c. }\right] \times \frac{1}{V} \sum_{k^{\prime}} \frac{1}{D_{E}^{2}(k+q)^{2}} \frac{1}{k^{2}+L_{\delta E}^{-2}}
\end{aligned}
$$

where $L_{\delta E}=\sqrt{D_{E} /(i \delta E)}, \Re L_{\delta E}($ see 40$)$. The sum $\frac{1}{V} \sum_{k^{\prime}}$ is given by 71 with ω changed to $-\delta E$, so that we can write our current in a usual form 60 with harmonics given by

$$
\begin{equation*}
I_{n}^{(\mathrm{T})}=\frac{4}{V} \sum_{q>0} \int \frac{\mathrm{~d} \epsilon \mathrm{~d} \omega}{2 \pi} e \nu_{0} \frac{\Lambda^{2}}{\nu_{0}^{2}} \Im \int \frac{\mathrm{~d} \delta E}{2 \pi} R_{\epsilon}(\delta E, \omega) \frac{D_{0} D_{E} q^{4}}{\left(D_{E-\omega} q^{2}\right)^{2}+\delta E^{2}} \frac{1-\exp \left[-n L / L_{\delta E}\right]}{\left(D_{E} q^{2}+i \delta E\right)^{3}} \tag{68}
\end{equation*}
$$

We close the integration path, avoiding crossing the branchcut (see fig. 14, and the result is given, as usually, by the poles in the region $-\frac{\pi}{2}<\arg i \delta E<\frac{\pi}{2}$. Since $\exp [-2 \pi]<0.002$, we neglect the exponential term in 68):

$$
\Im \int \frac{\mathrm{d} \delta E}{2 \pi} \ldots=\frac{D_{0} D_{E}}{2\left(D_{E}+D_{E-\omega)^{3}}\right.} \cdot \frac{L^{2}}{18}(2 \pi)^{2} \quad \frac{\pi^{2}}{6}\left(\left.\frac{\partial R_{\epsilon}(\delta E, \omega)}{\partial \delta E}\right|_{\delta E=0}\right)
$$

Figure 12: Simplest diagrams for triplet and superconducting channels. Every diagram has in addition its complex conjugated pair with an opposite sign, so one should take twice imaginary part. Dashed square represents Hikami box with a current vertex; interaction is drawn with a thick straight line; wavy lines stand for cooperons and diffusons. All diagrams here have coefficient $\frac{\Lambda^{2}}{\nu_{0}^{2}} R_{\omega}\left(E, E^{\prime}\right)$ with $R_{\omega}\left(E, E^{\prime}\right)$ defined in 57).

Figure 13: The first diagram from fig. 12(a).

Figure 14: $\int \mathrm{d} \delta E$ in complex plane.

$$
I_{n}^{(\mathrm{T})}=\frac{e \Lambda^{2} D_{0}^{2}}{6 g} \int \frac{\mathrm{~d} \epsilon \mathrm{~d} \omega}{2 \pi} \frac{D_{E}}{2\left(D_{E}+D_{E-\omega}\right)^{3}}\left(\left.\frac{\partial R_{\epsilon}(\delta E, \omega)}{\partial \delta E}\right|_{\delta E=0}\right)
$$

Then let us substitute $E=\epsilon+\frac{\omega}{2}+\frac{\delta E}{2} \approx \epsilon+\frac{\omega}{2}$ and $E-\omega \approx \epsilon-\frac{\omega}{2}$. This approximation is valid because the region $\{\delta E, \omega \mid \delta E, \omega \lesssim$ $\left.E_{\mathrm{T}} \ll T\right\}$ is negligebly small in our whole integration space so that we can drop δE from the expressions for E and $E-\omega$. Then we perform variable change: $\epsilon+\frac{\omega}{2} \rightarrow E, \epsilon-\frac{\omega}{2} \rightarrow E^{\prime}$. Expanding $\frac{D_{E}}{2\left(D_{E}+D_{E^{\prime}}\right)^{3}}$ and antisymmetrizing it by ω, we get $-\frac{\delta D_{E}-\delta D_{E^{\prime}}}{16 D_{0}^{3}}$ instead, so that

$$
\begin{equation*}
I_{n}^{(\mathrm{T})}=-\frac{e \Lambda^{2}}{48 g} \int \frac{\mathrm{~d} E \mathrm{~d} E^{\prime}}{2 \pi} \frac{\delta D_{E}}{D_{0}}\left(\left.\frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0}\right)=\frac{e \Lambda^{2}}{6 g \nu_{0}} \int \frac{\mathrm{~d} E}{2 \pi} \nu_{E}\left[\frac{\tilde{T} h_{E}^{\prime}}{2}-\frac{1-h_{E}^{2}}{4}\right] \tag{69}
\end{equation*}
$$

Taking spin into account leads to triplication of the result (69), see [16]. The second part of (69) has the same structure as singlet channel (65); however, it has different sign. In case of short range potential (69) is cancelled by (72), and this is the manifestation of the fact that short range interaction gives zero effect for fermions if one does not take spin into account, see sec. 3.3.3.

3.3.3 Singlet channel in case of a $\delta\left(\vec{r}-\vec{r}^{\prime}\right)$-like interaction

The aim of this subsection is to control that singlet and triplet channels are calculated correctly and no contributions of the same order are missing.

Let us see how calculation of the singlet channel contribution changes for a point-like interaction. In case of spinless fermions, the result should cancel that of the triplet channel. This is because $\delta\left(\vec{r}-\vec{r}^{\prime}\right)$-like interaction term is proportional to $\psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})=0$ for spinless fermions.

One could observe it in section 3.2 for the thermodynamic part of persistent current; let us check that this happens also for its kinetic part. The expression for the triplet channel would be the same as in the case of Coulomb interaction, see sec. 3.3.2. The result for the singlet channel will be different.

While even for the case of weak Coulomb interaction the RPA renormalization (see sec. 4.7) is important because of its long-range nature, for point interaction it is enough to calculate the coefficient 53 in the first non-vanishing order of the RPA-sequence. In the momentum space, the bare interaction is just a constant

$$
\begin{equation*}
U^{(0)}(\vec{q}, \omega)=\frac{\Lambda}{\nu_{0}}, \quad \Lambda \ll 1 \tag{70}
\end{equation*}
$$

which, once being substituted into (53), produces zero result. Then we calculate the second order term in the RPA series (see fig. 19), using $\sqrt[70]{ }$ as an expression for a bare interaction line:

$$
U(\vec{q}, \omega)=\frac{\Lambda^{2}}{\nu_{0}^{2}} \Pi(\vec{q}, \omega)
$$

where $\Pi(\vec{q}, \omega)$ is given by A50, A51, and A52). This time we get non zero result from (53):

$$
K=\frac{\Lambda^{2} \tau_{0}}{4 \nu_{0}} \int \mathrm{~d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right)\left[\frac{X}{1-X}+\frac{X^{*}}{1-X^{*}}\right]=\frac{\Lambda^{2}}{2 \nu_{0}} \int \mathrm{~d} E^{\prime} R_{\omega}\left(E, E^{\prime}\right) \frac{D_{0} q^{2}}{\left(D_{E^{\prime}} q^{2}\right)^{2}+\omega^{2}}
$$

The expression for the current is as follows:

$$
\vec{I}=S \frac{1}{V} \sum_{q} \int \frac{\mathrm{~d} E \mathrm{~d} E^{\prime} \mathrm{d} \omega}{(2 \pi)^{2}} 2 \Re i e D_{E} \vec{q} \cdot K \cdot \frac{1}{D_{E} q^{2}-i \omega} \frac{1}{V} \sum_{k^{\prime}} \frac{1}{D_{E}^{2}(k+q)^{2}} \frac{1}{k^{2}+L_{\omega}^{-2}},
$$

$$
\begin{equation*}
\frac{1}{V} \sum_{k^{\prime}}=-\frac{2}{S} \sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{-\Phi_{0}}\right] q \frac{1-\exp \left[-n L / L_{\omega}\right]}{\left(D_{E} q^{2}-i \omega\right)^{2}} \tag{71}
\end{equation*}
$$

so that

$$
\begin{aligned}
& I=-\sum_{n>0} \sin \left[2 \pi n \frac{\Phi}{-\Phi_{0}}\right] I_{n}^{(\mathrm{S})}, \quad I_{n}^{(\mathrm{S})}=-\int \frac{\mathrm{d} E \mathrm{~d} E^{\prime}}{2 \pi} 4 e \frac{\Lambda^{2}}{\nu_{0}} \times \\
& \times \frac{1}{V} \sum_{q>0} \Im \int \frac{\mathrm{~d} \omega}{2 \pi} R_{\omega}\left(E, E^{\prime}\right) \frac{D_{0} D_{E} q^{4}}{\left(D_{E^{\prime}} q^{2}\right)^{2}+\omega^{2}} \frac{1-\exp \left[-n L / L_{\omega}\right]}{\left(D_{E} q^{2}-i \omega\right)^{3}} . \\
& \Im \int \frac{\mathrm{d} \omega}{2 \pi} \ldots=\left(\left.\frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0}\right) \frac{D_{0} D_{E}}{\left(D_{E^{\prime}}+D_{E}\right)^{3}} \frac{1-\exp \left[-2 \pi m n \sqrt{\frac{D_{E^{\prime}}}{D_{E}}}\right]}{2(2 \pi m / L)^{2}},
\end{aligned}
$$

Expanding $\frac{D_{E}}{2\left(D_{E}+D_{E^{\prime}}\right)^{3}}$ and antisymmetrizing it by ω, we get $-\frac{\delta D_{E}-\delta D_{E^{\prime}}}{16 D_{0}^{3}}$ instead.

$$
\begin{align*}
I_{n}^{(\mathrm{S})} & =-\frac{e \Lambda^{2}}{12 g} \int \frac{\mathrm{~d} E \mathrm{~d} E^{\prime}}{2 \pi}\left(\left.\frac{\partial R_{\omega}\left(E, E^{\prime}\right)}{\partial \omega}\right|_{\omega=0}\right) \frac{D_{0}^{2} D_{E}}{\left(D_{E}+D_{E^{\prime}}\right)^{3}} C_{n}= \\
& =-\Lambda^{2} \frac{e}{6 g \nu_{0}} \int \frac{\mathrm{~d} E}{2 \pi} \nu_{E}\left[\frac{\tilde{T} h_{E}^{\prime}}{2}-\frac{1-h_{E}^{2}}{4}\right] . \tag{72}
\end{align*}
$$

One can see that it really cancels the contribution of the triplet channel calculated in section 3.3.2.

3.4 Result and its discussion

Out of equilibrium, the average of persistent in a mesoscopic ring is given by the thermodynamic and kinetic contributions. Given that the smallest scale T of the energy distribution function is much larger than the Thouless energy, $E_{\mathrm{T}} \ll T$, the entire current is given by expressions 46, 65, and 69):

$$
\begin{align*}
I= & \sum_{n \geq 1} \sin \left[2 \pi n \frac{\Phi}{\Phi_{0}}\right] I_{n}, \quad I_{n}=I_{n}^{\prime}+I_{n}^{\prime \prime} \tag{73}\\
& I_{n}^{\prime}=-\frac{8 e \Lambda n L}{D} \int_{0}^{\infty} \frac{\mathrm{d} \omega}{2 \pi} \tilde{T}(\omega) \sqrt{\frac{D}{2 \omega}}(\Re+\Im) \exp \left[-n L \frac{1+i}{\sqrt{2}} \sqrt{\frac{\omega}{D}}\right] \\
& I_{n}^{\prime \prime}=I_{n}^{(S)}+I_{n}^{(T)}=-\left(1-3 \Lambda^{2}\right) \frac{e \tilde{T}}{6 g} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi}\left(\frac{D_{E}}{D_{0}}\right)\left[\frac{f_{E}\left(1-f_{E}\right)}{\tilde{T}}+\frac{\partial f_{E}}{\partial E}\right] \tag{74}
\end{align*}
$$

where f_{E} is the energy disribution function, D_{E} is the energy-dependent diffusion coefficient, $\tilde{T}(\omega)=\frac{1}{4} \int_{-\infty}^{\infty} \mathrm{d} E\left(1-h_{E} h_{E-\omega}\right)$, $\tilde{T} \equiv \tilde{T}(0)=\int \mathrm{d} E f_{E}\left(1-f_{E}\right)$ is the effective temperature, and $g=\nu D S / L$ is the dimensionless conductance, $\Lambda \ll 1$ is the constant characterizing interaction strength on short distances, see A56.

Note that $f_{E}\left(1-f_{E}\right)=\overline{\left(\delta n_{E}\right)^{2}}$ is equal to the average thermal fluctuation of the occupation number of arbitrary state that has an energy E.

While in equilibrium two terms in the square brackets of 74 cancel each other for any fixed energy E, in a non-equilibrium steady state with constant density of states this cancelation occurs after integrating over energy. Thus in case of constant density of states $I_{n}^{\prime \prime}=0$.

Note that the effect studied is not due to the breaking of particle-hole symmetry (unlike in case of thermoelectric/acoustic effects and Coulomb drag). Indeed, suppose our nonequilibrium energy distribution has particle-hole symmetry, $h_{E}=-h_{-E}$. However, breaking it with an energy-dependence of the density of states $\nu_{E}=\nu_{0}+\nu_{0}^{\prime} E$ is not enough - the result (74) will be zero. The reason is that, in addition to the particle conservation law, $\int S t[E] \mathrm{d} E=0$ there is also conservation of energy: $\int S t[E] E \mathrm{~d} E=0$.

Unlike the thermodynamical current [10], the expression (74) for $I_{n}^{\prime \prime}$ is not strongly suppressed if $E_{\mathrm{T}} \ll T$. The decay of $I_{n}^{\prime \prime}$ is governed by dephasing $\exp \left[-L / L_{\phi}\right]$, where L_{ϕ} is the coherence length. In the considered quasi-onedimensional case $L / L_{\phi}=$ $\left(\tilde{T} / g E_{\mathrm{T}}\right)^{1 / 2}$, see sec. 4.3
in Fig. 15 a) we propose an experiment that could permit measuring $j^{\prime \prime}$. Non-equilibrium energy distribution in the ring is obtained by using metallic strip placed between two electrodes under voltage V. The energy distribution f_{E} and diffusion coefficient energy dependence D_{E} in the strip are shown on fig. 16, see ref. 17. Given the strip short and thick enough, one can ignore interaction effects in it, supposing its density matrix to be diagonal. Attached to a mesoscopic ring, the strip can be considered as a "nonequilibrium reservoir" that exports f_{E} into the ring, where the interaction produces off-diagonal matrix elements. Note that during the calculation we have neglected the effects due to the inhomogeneity of f_{E} in the ring. The area of the contact connecting the strip with the ring should be much smaller than the ring's crossection; otherwise the exchange of electrons between the ring and the strip would compromise the coherence in the ring.

Figure 15: A way to sustain non-equilibrium steady state in a mesoscopic ring: an experimental installation.

Figure 16: Simplified f_{E} and D_{E} dependences.

3.5 Discussion

We have calculated kinetic part of the current $I_{n}^{\prime \prime}$ for $E_{\mathrm{T}} \ll T$. In such conditions, the thermodynamic part of the current is very (almost exponentially) small (see sec. 3.2 , and the persistent current is represented entirely by its kinetic component 74 .

Using simplified f_{E} and D_{E} depemdences from fig. 16, we estimate (74) as:

$$
I_{1} \sim\left(1-3 \Lambda^{2}\right) \frac{e \Delta}{g} \frac{\delta D}{D} \times\left\{\begin{array}{l}
(\tilde{T} / \Delta)^{3}, \tilde{T} \ll \Delta \tag{75}\\
-\tilde{T} / \Delta, \tilde{T} \gg \Delta
\end{array}\right.
$$

where $\frac{\delta D}{D}$ is the caracteristic relative deviation of the diffusion coefficient. In 75 , the asymptotic for $\tilde{T} \gg \Delta$ is universal, while the one for $\tilde{T} \ll \Delta$ was calculated for the Lorentzian D_{E} dependence.

Suppose $D_{E} \neq$ const due to the Kondo effect [18]; then the width Δ of the dips in D_{E}
 dependence is of the order of Kondo temperature T_{K}. Moreover, the effect vanishes for $\tilde{T} \gtrsim \Delta \sim T_{\mathrm{K}}$ because of the rapid decay of $\frac{\delta D}{D}$. Thus from 75 it follows that its maximal value $I_{n}^{\prime \prime}$ has at $\tilde{T} \sim \delta \sim T_{\mathrm{K}}$. The approximate temperature temperature dependence of $I_{n}^{\prime \prime}$ is sketched in Fig. 17.

Let us estimate the result $\sqrt[74]{7}$, assuming that $T=T_{K}$ so that the scattering crossection of a Kondo impurity approaches λ_{F}^{2}. Then the mean free path of an electron has two contributions: the usual one $1 / l_{0}=n \sigma_{0}$ and the contribution due to the Kondo effect: $\delta(1 / l)=n_{K} \lambda_{F}^{2}$, where n and n_{K} are concentrations of normal and magnetic impurities:

$$
\begin{equation*}
\frac{1}{l}=n \sigma_{0}+n_{K} \lambda_{F}^{2}, \quad n_{K} \ll n_{0} \tag{76}
\end{equation*}
$$

Figure 17: The dependence of $I^{\prime \prime}$ on the effective temperature.

$$
\begin{equation*}
\frac{\delta D}{D} \sim \frac{\delta l}{l} \sim n_{K} \lambda_{F}^{2} l=\frac{n_{K}}{n_{0}} \frac{l}{\lambda_{F}} \tag{77}
\end{equation*}
$$

where $n_{0}=\lambda_{F}^{-3}$ is a concentration of electrons which we estimate as a concentration of atoms.

A typical voltage in experiments is $10^{-3} V$; it corresponds to temperature $\sim 10 K$. A typical size of a ring $L \sim 10 \mu m$, Thouless energy $E_{T} \sim 10 \mathrm{mK}$, mean free path of an electron $l \sim 100 \lambda_{F}$. Then the kinetic part of persistent current is of the order of

$$
\begin{equation*}
I_{1} \sim \frac{e}{g}\left(\frac{e V}{h}\right) \frac{\delta D}{D} \tag{78}
\end{equation*}
$$

If the concentration of magnetic impurities is high, $n_{K} / n_{0} \sim 10^{-3}=1000 \mathrm{ppm}$, from 77) and 78 we estimate $I \sim 0.1 n A$.
In the considered situation, when $E_{\mathrm{T}} \ll T, I_{n}^{\prime \prime}$ is much larger than the thermodynamic component I_{n}^{\prime}. Thus one can say that two components of persistent current are separated: the thermodynamic component I_{n}^{\prime} rules for small $T \lesssim E_{\mathrm{T}}$, while for $T \gg E_{\mathrm{T}}$, the kinetic component $I_{n}^{\prime \prime}$ becomes the most important. Let us now compare the value of I_{n}^{\prime} for $T=0$ with the value of $I_{n}^{\prime \prime}$ for $E_{\mathrm{T}} \ll T<\tilde{T} \sim T_{\mathrm{K}}$. Without taking into account the renormalization in the Cooper channel (see sec. 3.2.2, the thermodynamic component of persistent current is of the order of $\sim 0.1 \mathrm{nA}$. The renormalization in the Cooper channel diminishes this value by the factor of $\log ^{-1}\left(\frac{E_{F}}{\max \left(\tilde{T}, E_{T}\right)}\right) \sim 12$). Thus the maximal values of thermodynamic and kinetic parts of persistent current become equal when concentration of magnetic impurities equals $\sim 100 \mathrm{ppm}$.

3.6 Conclusions

In this section we studied the behaviour of persistent current in a system of many mesoscopic quasi-onedimensional rings in a nonequilibrium steady state. Out of equilibrium, in addition to the usual thermodynamic term I^{\prime}, another, kinetic term $I^{\prime \prime}$ contributes to the persistent current. The manifestation of $I^{\prime \prime}$ occurs only if the density of states is energy dependent.

The temperature dependence of I^{\prime} is governed eclusively by the smallest scale T of the energy distribution function f_{E}. It is independent of other scales of f_{E} if they are much larger than T.

On the contrary, given that $E_{\mathrm{T}} \ll T, I^{\prime \prime}$ is insensitive to T and is governed primarily by the largest scale \tilde{T} of f_{E}.
There is a sort of separation between the two components on temperature scale: each of the two, I^{\prime} and $I^{\prime \prime}$ give major contribution to the persistent for different ranges of values of T.

In addition, I^{\prime} can be eliminated by application of strong parallel magnetic field.
We wish to thank for fruitful discussions Igor Aleiner, Boris Narozhny, and Igor Lerner.

4 Appendix

4.1 Trace of a thermodynamic current operator

Let us demonstrate that in (22) $f_{T}(E)$ can be shifted by an arbitary constant [19]. In other words, trace of thermodynamic part of a current operator ${ }^{11}$ equals zero:

$$
\begin{array}{r}
\left\langle\vec{r}, E \mid \hat{\vec{j}}^{\prime} \vec{r}^{\prime}, E^{\prime}\right\rangle=\frac{e}{2 m}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}-2 i e \vec{A}\right)\left[G_{\mathrm{R}}\left(\vec{r}, \vec{r}^{\prime} ; E, E^{\prime}\right)-G_{\mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E, E^{\prime}\right)\right] \\
\forall \vec{r} \quad \int \mathrm{~d} E\langle\vec{r}, E| \hat{\vec{j}}|\vec{r}, E\rangle=0 \tag{A2}
\end{array}
$$

where $G_{\mathrm{R} / \mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E, E^{\prime}\right)$ are Fourier tranformations of Green functions A 79 in both time variables.
In a non-interacting system current is given by thermodynamic formula:

$$
\begin{equation*}
\vec{j}(\vec{r})=-\frac{\delta \bar{E}}{\delta \vec{A}(\vec{r})}, \quad \bar{E}=\int_{-E_{F}}^{\infty} \mathrm{d} E \nu_{E} f_{T}(E) E=\sum_{n} f_{T}\left(E_{n}\right) E_{n} \tag{A3}
\end{equation*}
$$

From (2) and 13 we conclude that

$$
\vec{j}\left(\vec{r}, E_{n}\right)=-\frac{\delta E_{n}}{\delta \vec{A}(\vec{r})}
$$

We have to prove that $\sum_{n} \vec{j}\left(\vec{r}, E_{n}\right)=0$. Due to the known theorem from thermodynamics [20], a derivative of the average by the variable representing an external force is equal to the average from the derivative of an operator by this variable. and thus

$$
\begin{equation*}
\sum_{n} \vec{j}\left(\vec{r}, E_{n}\right)=-\sum_{n}\langle n| \frac{\delta \hat{H}}{\delta \vec{A}(\vec{r})}|n\rangle=-\frac{\delta}{\delta \vec{A}(\vec{r})} \operatorname{Sp}\left[\hat{H}-\left.\hat{H}\right|_{\vec{A}=0}\right] \tag{A4}
\end{equation*}
$$

where in the right part of the expression we subtracted Hamiltonian of the system without magnetic field, in order to preserve convergence of Sp. In coordinate representation the dependence of the Hamiltonian on vector potential is given by $\hat{H}\left(\vec{r}, \vec{r}^{\prime}\right)=$ $\left.\hat{H}\left(\vec{r}, \vec{r}^{\prime}\right)\right|_{\vec{A}=0} \exp \left[i e \vec{A}\left(\vec{r}-\vec{r}^{\prime}\right)\right]$, so that its diagonal matrix elements do not depend on \vec{A}, and A4 equals zero.

In section 2 this permits us to substitute Fermi distribution function (2) with $-\frac{1}{2} \tanh \frac{E}{2 T}$.
The statement A2 is true also for thermodynanic part of the current in a non-equilibrium system with interaction: that's because any interaction corrections to the the diagonal part of the current operator A1) gives zero contribution to A2 due to their analytic properties.
(50) Later (06.03.2006) note: in other words, we have demonstrated that $\operatorname{Sp} \hat{\vec{j}}=0$. From pp. [21]283-284 we know that the part of the current operator expanded in the powers of \hat{H} (where \hat{H} is the unperturbed Hamiltonian) can not give any contribution to the linear responce, so that without the loss of generallity it is zero:

$$
\forall n \geq 0 \quad \frac{\operatorname{Sp}\left[\hat{H}^{n} \hat{\vec{j}}\right.}{\operatorname{Sp} \hat{H}} \hat{H}^{n}=0
$$

4.2 Density matrix in quasiequilibrium state

Consider a nonequilibrium system where energy distribution ${ }^{12}$ relaxes to equilibrium much slowlier than the rest of physical quantities characterizing the system. Then in a certain range of time scales we can approximate complete density matrix of the system with the density matrix having maximal entropy with a fixed energy distribution. In [21], the physical state described by such a matrix is called quasiequilibrium state.

In this section we demonstrate that one-particle quasiequilibrium density matrix is diagonal. Let Λ denote the entire set of quantum numbers characterizing the state of a many-electron system in a representation with the diagonal Hamiltonian (including its part responsible for the interaction). We have to find conditional extremum of the entropy

$$
\begin{equation*}
\sigma=-\sum_{\Lambda} \rho_{\Lambda \Lambda} \log \rho_{\Lambda \Lambda} \tag{A5}
\end{equation*}
$$

with additional conditions:

$$
\begin{equation*}
\operatorname{Sp} \hat{\rho}=1, \quad \operatorname{Sp}[\hat{\rho} \delta(E-\hat{H})]=f_{E} . \tag{A6}
\end{equation*}
$$

[^8]where f_{E} stands for given energy distribution function. The first condition in A6) corresponds to one Lagrange multiplier $\Phi-1$, while the second one - to the set $\left\{F_{E}\right\}$:
$$
\delta\left\{-\operatorname{Sp} \hat{\rho} \log \hat{\rho}-(\Phi-1) \operatorname{Sp} \hat{\rho}-\int \mathrm{d} E F_{E} \operatorname{Sp}[\hat{\rho} \delta(E-\hat{H})]\right\}=0
$$

From A5 one deduces that [21] $\delta \sigma=-\mathrm{Sp}[(1+\log \hat{\rho}) \delta \hat{\rho}]$, so that complete quasiequilibrium density matrix is given by

$$
\begin{equation*}
\hat{\rho}=\exp \left[-\Phi-\int \mathrm{d} E F_{E} \delta(E-\hat{H})\right] \tag{A7}
\end{equation*}
$$

which is certainly diagonal in the Λ-representation we have chosen (since the Hamiltonian is diagonal). Lagrange multipliers are determined from conditions

$$
\begin{gathered}
\sum_{\Lambda}\langle\Lambda| \exp \left[-\Phi-\int \mathrm{d} E F_{E} \operatorname{Sp}\left[\hat{\rho} \delta\left(E-\epsilon_{\Lambda}\right)\right]\right]|\Lambda\rangle=1 \\
\sum_{\Lambda}\langle\Lambda| \exp \left[-\Phi-\int \mathrm{d} E^{\prime} F_{E^{\prime}} \operatorname{Sp}\left[\hat{\rho} \delta\left(E^{\prime}-\epsilon_{\Lambda}\right)\right]\right] \delta\left(E-\epsilon_{\Lambda}\right)|\Lambda\rangle=f_{E}
\end{gathered}
$$

Now let degrade complete density matrix A7 to the one particle one. Let $\mid \lambda>$ denote one-particle state, $\left\langle\lambda \mid \lambda^{\prime}\right\rangle=\delta_{\lambda \lambda^{\prime}}$. One particle density matrix is given by 22]

$$
\rho_{\lambda \lambda^{\prime}}=\left\langle a_{\lambda}^{\dagger} a_{\lambda}\right\rangle=\sum_{\Lambda} \exp \left[-\Phi-\int \mathrm{d} E^{\prime} F_{E^{\prime}} \delta\left(E^{\prime}-\epsilon_{\Lambda}\right)\right]\langle\Lambda| a_{\lambda}^{\dagger} a_{\lambda^{\prime}}|\Lambda\rangle
$$

Given $\left\langle\Lambda \mid \Lambda^{\prime}\right\rangle \propto \delta_{\Lambda \Lambda^{\prime}}$, one concludes that quasiequilibrium one-particle density matrix is diagonal: $\rho_{\lambda \lambda^{\prime}} \propto \delta_{\lambda \lambda^{\prime}}$. Since in a disordered system with a magnetic field energy levels are not degenerate, this conclusion is true also when λ stands for energy.

4.3 Dephasing in the ring

The dephasing time is given by the equation [23]:

$$
\begin{equation*}
\frac{1}{\tau_{\phi}}=\frac{\tilde{T}}{S \nu \sqrt{D}} \int_{0}^{\tilde{T}} \frac{\mathrm{~d} \omega}{\omega^{3 / 2}} \tag{A8}
\end{equation*}
$$

The integral in A8 diverges when $\omega \rightarrow 0$, so that a cut-off has to be introduced. While for the case of a strip the cut-off is $1 / \tau_{\phi}$, in case of a ring it must be E_{T}, due to the argument of [24]. Thus for a ring we have:

$$
\frac{1}{\tau_{\phi}}=\frac{\tilde{T}}{S \nu \sqrt{D E_{\mathrm{T}}}}=\frac{\tilde{T}}{g}, \quad g=\frac{\nu D S}{L}
$$

In the diffusion regime $L_{\phi}=\sqrt{D \tau_{\phi}}$, so that

$$
\frac{L}{L_{\phi}}=\frac{1}{\sqrt{E_{\mathrm{T}} \tau_{\phi}}}=\sqrt{\frac{\tilde{T}}{g E_{\mathrm{T}}}}
$$

4.4 Average of a Green's function

We calculate $\langle G\rangle$, and then also $\langle G G\rangle$ using the $T=0$ diagram technique. We can use the $T=0$ technique for this calculation because the field of impurities is static and thus cannot provide temperature dependence.

After averaging one realizes that series for $\left\langle G^{(0)}(\vec{p})\right\rangle \equiv G(\vec{p})$ implies the following self energy (self-consistent Born approximation, see (5] 39.7):

where G stands for $G_{\mathrm{R}}, G_{\mathrm{A}}$, or time-ordered Green function. For arbitary realistic impurity potential $U(\vec{p})$ every term in A9) is finite.

If we define $\Im \Sigma_{E} \stackrel{\text { df }}{=}-\frac{1}{2 \tau_{E}}$, the average of a Green function will have the form:

$$
\begin{equation*}
G(p)=\frac{1}{E-\xi_{\vec{p}}+\frac{i}{2 \tau_{E}} \frac{E}{|E|}}, \quad G_{\mathrm{R} / \mathrm{A}}(p)=\frac{1}{E-\xi_{\vec{p}} \pm \frac{i}{2 \tau_{E}}}, \quad \tau_{E} \in \Re \tag{A10}
\end{equation*}
$$

In A10 $\xi_{\vec{p}}=\epsilon(\vec{p})-\mu=$ energy of the particle reckonked from the chemical potential. Let us derive τ_{E}.

$$
\begin{equation*}
\Sigma_{\mathrm{R} / \mathrm{A}}\left(\vec{q}_{\vec{m}}, E\right) \equiv \Sigma_{E}\left(\vec{q}_{\vec{m}}\right)=\frac{1}{2 \pi \nu_{0} \tilde{\tau} V} \sum_{\vec{n}} \frac{1}{E-\epsilon\left(\vec{p}_{\vec{n}}\right)-\Sigma_{E}\left(\vec{p}_{\vec{n}}\right)}, \tag{A11}
\end{equation*}
$$

In the approximation with the constant density of state ${ }^{13} \nu(\xi) \approx \nu_{0}, ~ A 11$ is equivalent to considering only the first term ${ }^{14}$ in A9):

$$
\begin{equation*}
\operatorname{Im} \Sigma_{\mathrm{R}}^{(0)}=\frac{1}{2 \pi \nu \tau V} \int_{-\infty}^{\infty} \mathrm{d} \xi \nu_{0} \times \operatorname{Im} \frac{1}{E-\xi+i \delta}, \quad \delta=+0 \tag{A13}
\end{equation*}
$$

$$
\begin{equation*}
\text { From A13 it follows : } \tau_{E}=\tau_{0}=\tilde{\tau} \tag{A14}
\end{equation*}
$$

In A13 E-independent part of $\operatorname{Re} \Sigma_{E}$ is insignificant because it can be absorbed by $\epsilon(\vec{p})$. The E-dependent part can be estimated as $\frac{E}{\tau E_{F}} \ll E$. Thus one can think that $\operatorname{Re} \Sigma_{E}=0$. The situation is different for $\operatorname{Im} \Sigma_{E}$.

The imaginary part of A11 gives us an important sum rule for $\operatorname{Im} \Sigma_{E} \equiv-\frac{1}{2 \tau_{E}}$:

$$
\begin{align*}
\forall E \quad & 2 \pi \nu_{0} \tilde{\tau}= \\
& \int_{-\infty}^{\infty} \mathrm{d} \xi \frac{\nu(\xi)}{(E-\xi)^{2}+\frac{1}{4 \tau_{E}^{2}}}=\frac{1}{V} \sum_{\vec{n} \in \mathbb{Z}^{d}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}, E\right), \tag{A15}
\end{align*}
$$

From A15 we see that out of the constant density of states approximation

$$
\begin{equation*}
\frac{\tilde{\tau}}{\tau_{0}}=\frac{\tilde{\nu}}{\nu_{0}}, \quad \tilde{\nu} \stackrel{\mathrm{df}}{=} \int_{-\infty}^{\infty} \frac{\mathrm{d} z}{\pi} \frac{\nu\left(z /\left(2 \tau_{0}\right)\right)}{1+z^{2}} \tag{A16}
\end{equation*}
$$

From Lehmann representation

$$
\begin{equation*}
G_{\mathrm{R} / \mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)=\sum_{n} \frac{\psi_{n}(\vec{r}) \psi_{n}^{*}\left(\vec{r}^{\prime}\right)}{E-E_{n} \pm i \epsilon}, \quad \epsilon=+0 \tag{A17}
\end{equation*}
$$

we see that in case of no interaction between the electrons we have

$$
\begin{equation*}
G_{\mathrm{R}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)-G_{\mathrm{A}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)=-2 \pi i \sum_{n} \delta\left(E-E_{n}\right) \psi_{n}(\vec{r}) \psi_{n}^{*}\left(\vec{r}^{\prime}\right) \tag{A18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{V} \int \mathrm{~d}^{d} r\left[G_{\mathrm{R}}(\vec{r}, \vec{r} ; E)-G_{\mathrm{A}}(\vec{r}, \vec{r} ; E)\right]=-2 \pi i \nu(E) \tag{A19}
\end{equation*}
$$

where $\nu(E)$ is the density of states defined by A12). For averaged Green functions (or for a homogeneous system) coordinate integration in A19 is fictios, because integrand does not depend on coordinates.

From A19 one obtains:

$$
\frac{1}{V} \sum_{p}\left[G_{\mathrm{R}}(\vec{p}, E)-G_{\mathrm{A}}(\vec{p}, E)\right]=-2 \pi i \nu(E)
$$

Supposing that disorder averaged Green function has the form A10, we have

$$
\begin{equation*}
\forall E \quad \frac{1}{V} \sum_{\vec{p}} \frac{1}{(E-\epsilon(\vec{p}))^{2}+\frac{1}{4 \tau^{2}(E)}}=2 \pi \nu_{E} \tau_{E} \tag{A20}
\end{equation*}
$$

Given A10, from A20 we have

$$
\begin{equation*}
\frac{1}{V} \sum_{\vec{n} \in \mathbb{Z}^{d}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}, E\right)=2 \pi \nu_{E} \tau_{E} \tag{A21}
\end{equation*}
$$

$$
\begin{align*}
& { }^{13} \text { It's definition: }\left(\Omega_{0} \text { is the complete solid angle; in } 3 \mathrm{D} \Omega_{0}=4 \pi, \text { in } 2 \mathrm{D} \Omega_{0}=2 \pi\right) \\
& \qquad \nu(\xi) \equiv \frac{1}{V} \sum_{\vec{n}} \delta\left(\xi+\mu-\epsilon\left(\vec{p}_{\vec{n}}\right)\right) \quad \text { so that } \frac{1}{V} \sum_{\vec{p}}=\nu(\xi) \mathrm{d} \xi \frac{\mathrm{~d} \Omega}{\Omega_{0}}, \tag{A12}
\end{align*}
$$

${ }^{14}$ It is easy to see that due to the analytical properties the other ones $=0$. Due to the same reason one can substitute $G \rightarrow G^{(0)}$ in A9.
so that from A15 one concludes that

$$
\begin{equation*}
\forall E \quad \nu_{E} \tau_{E}=\nu_{0} \tau_{0} ; \quad \tau_{0}=\tilde{\tau}, \quad \tilde{\nu}=\nu_{0}=\int_{-\infty}^{\infty} \frac{\mathrm{d} z}{\pi} \frac{\nu\left(z /\left(2 \tau_{0}\right)\right)}{1+z^{2}}, \tag{A22}
\end{equation*}
$$

so that the even part of $\delta \nu_{E}=\nu_{E}-\nu_{0}$ changes its sign, if not $\delta \nu_{E} \equiv 0$. Eq. A22 holds for the non-interacting system so that there is no surprise that it is not correct e.g., for the zero bias anomaly.

Let us parametrize ${ }^{15}$ dependencies of ν_{E} and τ_{E} in the vicinity of point $E=0$:

$$
\begin{gather*}
\nu_{E} \approx \nu_{0}(1+x E)=\nu_{0}+\delta \nu_{E}, \quad \tau_{E} \approx \tau_{0}(1-x E), \tag{A23}\\
|E| \lesssim T^{*} / 2, \quad x T^{*} / 2 \ll 1
\end{gather*}
$$

We assume that energy-dependent deviation in A23) is small for $\nu: \delta \nu_{E} \ll \nu_{0}$ and for all other quantities: τ_{E}, D_{E} (see A68), etc. Because integrals $\int \mathrm{d} \xi$ converge on $\xi \sim \frac{1}{\tau}$, we also have to impose $x \ll \tau_{0}$.

Now let us make some notes about the derivation of A68). For small q we use an approximation $\epsilon(\vec{p}+\vec{q})=\epsilon(\vec{p})+\vec{v} \vec{q}+b q^{2} / 2$. Before perfoming the integration over ξ one should develop the integrated expression by E, ω and \vec{q}. Then for the zero-order term (A15) is applied; in the other terms one can use A23) for $\nu(\xi)$. To make $\sum_{\vec{n}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}-\vec{q}_{\vec{m}}, E-\omega\right)$ invariant under arbitary shift in \vec{n}, and in particular, to maintain the obvious relation $\sum_{\vec{n}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}-\vec{q}_{\vec{m}}, E-\omega\right)=\sum_{\vec{n}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}+\vec{q}_{\vec{m}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}, E-\omega\right)$, one has to assume $b=x D_{0} / \tau_{0}=v^{2} x / d$, so that

$$
\begin{equation*}
\epsilon(\vec{p}+\vec{q})=\epsilon(\vec{p})+\vec{v} \vec{q}+x \frac{D_{0}}{2 \tau_{0}} q^{2}=\epsilon(\vec{p})+\vec{v} \vec{q}+x \frac{v^{2}}{2 d} q^{2} \tag{A24}
\end{equation*}
$$

From $(\mathrm{A} 24)$ it folllows that usually, when we are not interested in the effects due to the $\nu(\xi) \neq$ const $=\nu_{0}$, we can drop quadratic term in the decomposition of $\epsilon(\vec{p}+\vec{q})$.

4.5 Average of two Green's functions: cooperon and diffuson

The average of two Green's functions is represented by two sequences of diagrams: the Cooper-alike ladder (named cooperon) and series of maxiamlly anticrossed diagrams (called diffuson):

$$
\begin{equation*}
\left\langle G_{\mathrm{R}}\left(\vec{p}_{1}, \vec{p}_{3} ; E\right) G_{\mathrm{A}}\left(\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}\right)\right\rangle=\longrightarrow \longrightarrow_{\longrightarrow}+\mathbb{C}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E}+\mathbb{D}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E} \tag{A25}
\end{equation*}
$$

where dashed line stands for impurity averaging (5) and

In the diagrams drawn above, we imply that upper Green function line has energy E, the lower one $-E^{\prime}$, and momentum variables are placed like in the example:

Here are the expressions for \mathbb{C} and $\overrightarrow{\mathbb{D}_{2}}$:

$$
\begin{array}{r}
\mathbb{C}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E}=(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{2}-\left(\vec{p}_{3}+\vec{p}_{4}\right)\right) G_{\mathrm{R}}\left(\vec{p}_{1}, E\right) G_{\mathrm{A}}\left(\vec{p}_{2}, E^{\prime}\right) \times \\
\frac{1}{2 \pi \nu_{0} \tilde{\tau}} \cdot \frac{G_{\mathrm{R}}\left(\vec{p}_{3}, E\right) G_{\mathrm{A}}\left(\vec{p}_{4}, E^{\prime}\right)}{1-X^{(+)}}, \\
\mathbb{D}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E}=(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{4}-\left(\vec{p}_{3}+\vec{p}_{2}\right)\right) G_{\mathrm{R}}\left(\vec{p}_{1}, E\right) G_{\mathrm{A}}\left(\vec{p}_{2}, E^{\prime}\right) \times \\
\frac{1}{2 \pi \nu_{0} \tilde{\tau}} \cdot \frac{G_{\mathrm{R}}\left(\vec{p}_{3}, E\right) G_{\mathrm{A}}\left(\vec{p}_{4}, E^{\prime}\right)}{1-X^{(-)}}, \tag{A27}
\end{array}
$$

where

$$
\begin{gather*}
X^{(+)}=\frac{1}{2 \pi \nu_{0} \tilde{\tau}} \frac{1}{V} \sum_{p} G_{\mathrm{R}}(\vec{p}, E) G_{\mathrm{A}}\left(\vec{p}-\left(\vec{p}_{1}+\vec{p}_{2}-2 e \vec{A}\right), E^{\prime}\right), \\
X^{(-)}=\frac{1}{2 \pi \nu_{0} \tilde{\tau}} \frac{1}{V} \sum_{p} G_{\mathrm{R}}(\vec{p}, E) G_{\mathrm{A}}\left(\vec{p}-\left(\vec{p}_{1}-\vec{p}_{2}\right), E^{\prime}\right) . \tag{A28}
\end{gather*}
$$

More than $\mathbb{C}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E}$ and $\mathbb{D}_{\vec{p}_{2}, \vec{p}_{4} ; E^{\prime}}^{\vec{p}_{1}, \vec{p}_{3} ; E}$, we deal with $C_{\vec{p}_{2}}^{\vec{p}_{1} \vec{p}_{3} ; E_{2} ; E_{1}}$ and $D_{\vec{p}_{2}, E^{\prime}}^{\vec{p}_{1}, E}$, defined by the following:

$$
\begin{align*}
& \mathbb{C}_{\vec{p}_{1}, \vec{p}_{3} ; E^{\prime}}^{\vec{p}^{\prime}}=(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{2}-\left(\vec{p}_{3}+\vec{p}_{4}\right)\right) G_{\mathrm{R}}\left(\vec{p}_{1}, E\right) G_{\mathrm{A}}\left(\vec{p}_{2}, E^{\prime}\right) G_{\mathrm{R}}\left(\vec{p}_{3}, E\right) G_{\mathrm{A}}\left(\vec{p}_{4}, E^{\prime}\right) C_{\vec{p}_{2}, E^{\prime}}^{\vec{p}_{1}, E}, \\
& \mathbb{D}_{\vec{p}_{1}, \vec{p}_{3}, E}, \vec{p}_{4} ; E^{\prime} \tag{A29}\\
& =(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{4}-\left(\vec{p}_{3}+\vec{p}_{2}\right)\right) G_{\mathrm{R}}\left(\vec{p}_{1}, E\right) G_{\mathrm{A}}\left(\vec{p}_{2}, E^{\prime}\right) G_{\mathrm{R}}\left(\vec{p}_{3}, E\right) G_{\mathrm{A}}\left(\vec{p}_{4}, E^{\prime}\right) D_{\vec{p}_{2}, E E^{\prime}}^{\vec{p}_{1}, E}
\end{align*}
$$

[^9]

Figure 18: The Keldysh contour.

$$
\begin{align*}
& C_{\vec{k}-\vec{p}, E-\omega}^{\vec{p}, E}=\frac{1}{2 \pi \nu_{0} \tau_{0} \tau_{\epsilon}} \frac{1}{-i \omega+D_{\epsilon} k^{2}} ; \tag{A30}\\
& D_{\vec{p}-\vec{k}, E-\omega}^{\vec{p}, E}=\frac{1}{2 \pi \nu_{0} \tau_{0} \tau_{\epsilon}} \frac{1}{-i \omega+D_{\epsilon} k^{2}} ; \tag{A31}
\end{align*}
$$

Notice that A30 and A31) differ from their values for $\nu(\xi)=$ const only by substitution of τ, D with their energy dependent generalizations $\tau_{\epsilon}, D_{\epsilon}$, etc.

Now let us consider the case of constant density of states. There is no energy transfer in cooperon or diffuson lines, so in energy representation we have simple products of the type: $G_{\mathrm{R}}\left(E_{1}\right) G_{\mathrm{R}}\left(E_{1}\right) \Sigma_{E_{2}}^{E_{1}} G_{\mathrm{A}}\left(E_{2}\right) G_{\mathrm{A}}\left(E_{2}\right)$. In time representation we get convolution. Let us write out the expressions for $\Sigma(C)$ and $\Sigma(D)$ in momentum- time representation (with the removed $(2 \pi)^{2} \delta\left(E_{1}-E_{3}\right) \delta\left(E_{2}-E_{4}\right)$):

$$
\begin{array}{r}
C\left(\vec{p}_{1}, \vec{p}_{2} ; t\right)=\frac{(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{2}-\left(\vec{p}_{3}+\vec{p}_{4}\right)\right) \delta\left(t+t_{2}\right) \theta(t) \exp \left[-D t\left(\vec{p}_{1}+\vec{p}_{2}-2 e \vec{A}\right)^{2}\right]}{2 \pi \nu_{0} \tau^{2}} ; \\
D\left(\vec{p}_{1}, \vec{p}_{2} ; t\right)=\frac{(2 \pi)^{d} \delta\left(\vec{p}_{1}+\vec{p}_{4}-\left(\vec{p}_{3}+\vec{p}_{2}\right)\right) \delta\left(t+t_{2}\right) \theta(t) \exp \left[-D t\left(\vec{p}_{1}-\vec{p}_{2}\right)^{2}\right]}{2 \pi \nu_{0} \tau^{2}} ; \tag{A33}
\end{array}
$$

4.6 Keldysh technique

Consider the case of a quasiequilibrium state [21] when an external fixed parameter is the energy distribution function, see sec. 4.2 The Keldysh technique is derived exactly in the same manner as the $T=0$ one; the difference stands in the substitution of the time ordering by the Keldysh contour ordering $T_{C_{K}}$, see fig. 18 .

$$
\begin{equation*}
G_{C_{\mathrm{K}}}\left(x, x^{\prime}\right) \equiv-i\left\langle T_{c}\left[\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right]\right\rangle . \tag{A34}
\end{equation*}
$$

Then we can map $G_{C_{\mathrm{K}}}$ onto 2×2 matrix, so that the first argument of the Green function corresponds to the upper part of the contour, while the second argument - to the lower part. One immediately notes that we are almost always interested in the off-diagonal elements of this matrix, which gives the density matrix - like quantities A38. Then using A80 we transform our 2×2 matrix

$$
\begin{align*}
G_{C_{\mathrm{K}}} & \leftrightarrow\left(\begin{array}{ll}
G_{f f} & G_{f b} \\
G_{b f} & G_{b b}
\end{array}\right)=\left(\begin{array}{ll}
-i\left\langle T\left[\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right]\right\rangle & -i \eta\left\langle\psi^{\dagger}\left(x^{\prime}\right) \psi(x)\right\rangle \\
-i\left\langle\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right\rangle & -i\left\langle\tilde{T}\left[\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right]\right\rangle
\end{array}\right)= \\
& =\frac{1}{2}\left(\begin{array}{ll}
G_{\mathrm{R}}^{(+)}+G_{\mathrm{R}}^{(-)}-\eta\left(G_{\mathrm{A}}^{(+)}-G_{\mathrm{A}}^{(-)}\right) & \eta\left[G_{\mathrm{R}}^{(+)}-G_{\mathrm{R}}^{(-)}-\left(G_{\mathrm{A}}^{(+)}-G_{\mathrm{A}}^{(-)}\right)\right] \\
G_{\mathrm{R}}^{(+)}+G_{\mathrm{R}}^{(-)}-\left(G_{\mathrm{A}}^{(+)}+G_{\mathrm{A}}^{(-)}\right) & -\left(G_{\mathrm{A}}^{(+)}+G_{\mathrm{A}}^{(-)}\right)+\eta\left(G_{\mathrm{R}}^{(+)}-G_{\mathrm{R}}^{(-)}\right)
\end{array}\right)= \\
& =\frac{1}{2}\left(\begin{array}{ll}
G_{\mathrm{K}}+\left(G_{\mathrm{R}}+G_{\mathrm{A}}\right) & G_{\mathrm{K}}-\left(G_{\mathrm{R}}-G_{\mathrm{A}}\right) \\
G_{\mathrm{K}}+\left(G_{\mathrm{R}}-G_{\mathrm{A}}\right) & G_{\mathrm{K}}-\left(G_{\mathrm{R}}+G_{\mathrm{A}}\right)
\end{array}\right) \equiv \Gamma, \tag{A35}
\end{align*}
$$

where T and \tilde{T} stand for normal and inverse time ordering; all Green functions have (x, x^{\prime}) arguments. It is more convinient to work in the representation where Green function is given by the upper triangular matrix

$$
G=\left(\begin{array}{cc}
G_{\mathrm{R}} & G_{\mathrm{K}} \tag{A36}\\
0 & G_{\mathrm{A}}
\end{array}\right)=L \sigma_{3} \Gamma L^{-1}, \quad L=\frac{\sigma_{0}-i \sigma_{2}}{\sqrt{2}},
$$

where σ_{i} stand for Pauli matrices. The transformation A36 is also responsible for the form of emmision and absorbtion matrices (33).

With the notations (A79) we have from (14]2.22) (in the following, upper signs stand for bosons and the lower ones - for fermions):

$$
\begin{equation*}
G_{\mathrm{K}}\left(\lambda, \lambda^{\prime}\right)=-i\left\langle\left[\psi(\lambda), \psi^{\dagger}\left(\lambda^{\prime}\right)\right]_{28}\right\rangle=G_{\mathrm{R}}^{(\pm)}\left(\lambda, \lambda^{\prime}\right)-G_{\mathrm{A}}^{(\pm)}\left(\lambda, \lambda^{\prime}\right), \tag{A37}
\end{equation*}
$$

Note that $G_{\mathrm{R} / \mathrm{A}}^{(\mp)}$ are the usual retarded and advanced Green functions (see [5]).
One obtains that for fermions

$$
\begin{align*}
\left\langle\psi(\lambda) \psi^{\dagger}\left(\lambda^{\prime}\right)\right\rangle & =\frac{i}{2}\left[G_{\mathrm{R}}\left(\lambda, \lambda^{\prime}\right)-G_{\mathrm{A}}\left(\lambda, \lambda^{\prime}\right)+G_{\mathrm{K}}\left(\lambda, \lambda^{\prime}\right)\right], \\
\left\langle\psi^{\dagger}\left(\lambda^{\prime}\right) \psi(\lambda)\right\rangle & =\frac{i}{2}\left[G_{\mathrm{R}}\left(\lambda, \lambda^{\prime}\right)-G_{\mathrm{A}}\left(\lambda, \lambda^{\prime}\right)-G_{\mathrm{K}}\left(\lambda, \lambda^{\prime}\right)\right] . \tag{A38}
\end{align*}
$$

The expression for the operator of current density (in the interaction representation):

$$
\begin{equation*}
\hat{\vec{j}}(x)=\frac{i e \hbar}{2 m}\left[\left(\nabla \psi^{\dagger}(x)\right) \psi(x)-\psi^{\dagger}(x)(\nabla \psi(x))\right]-\frac{e^{2}}{m c} \vec{A}(x) \psi^{\dagger}(x) \psi(x) ; \quad x \equiv(\vec{r}, t) \tag{A39}
\end{equation*}
$$

From A39] we obtain the formula for the current of fermions (keeping in mind A2p):

$$
\begin{align*}
\vec{j}(\vec{r}) & =\frac{e \hbar}{4 m} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \lim _{\vec{r}^{\prime} \rightarrow \vec{r}}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}-2 i \frac{e}{\hbar c} \vec{A}\right)\left[G_{\mathrm{R}}-G_{\mathrm{A}}-G_{\mathrm{K}}\right]\left(\vec{r}, \vec{r}^{\prime} ; E\right)= \\
& -\frac{e \hbar}{4 m} \int_{-\infty}^{\infty} \frac{\mathrm{d} E}{2 \pi} \lim _{\vec{r}^{\prime} \rightarrow \vec{r}}\left(\vec{\nabla}_{\vec{r}}-\vec{\nabla}_{\vec{r}^{\prime}}-2 i \frac{e}{\hbar c} \vec{A}\right) G_{\mathrm{K}}\left(\vec{r}, \vec{r}^{\prime} ; E\right)= \tag{A40}\\
& \quad \int \frac{\mathrm{d} E}{2 \pi} \frac{1}{V} \sum_{\vec{p}} \frac{1}{2} \hat{\vec{j}}(\vec{p}) G_{\mathrm{K}}(\vec{p}, E),
\end{align*}
$$

where $\hat{\vec{j}}(\vec{p})$ is defined in 37.
From ($[22] 2.8)$ and $([22] 2.10)$ it follows that in equilibrium $G^{(+)}=G^{(-)} \operatorname{coth} \frac{\beta E}{2}$, and we obtain that

$$
\begin{equation*}
G_{\mathrm{K}}=h\left(G_{\mathrm{R}}-G_{\mathrm{A}}\right) \tag{A41}
\end{equation*}
$$

with h from (A45). In equilibrium from (A40) and A41) one obtains (2). In our article [26] (see sec. 3.3) we argue (though do not prove rigorously) that $G_{\mathrm{R} / \mathrm{A}}$ contain the information only about diagonal matrix elements ${ }^{16}$. Thus any physical quantity defined using $G_{\mathrm{R} / \mathrm{A}}$ (like tunnel density of states) can be written in an equilibrium form (see $\sqrt{2}$) as an example):

$$
\begin{equation*}
O=\int \mathrm{d} E \frac{1}{1+e^{E / T}} O(E) . \tag{A42}
\end{equation*}
$$

Let us consider an equilibrium of non-interacting particles in some external potential, so that λ is a conserving quantity. From A82) and A83) we get:

$$
\begin{align*}
G_{\mathrm{R}}^{(\pm)(0)}(\lambda, E)= & \frac{h_{\mathrm{B} / F}\left(\xi_{\lambda}\right)}{E-\xi_{\lambda}+i \delta}, \quad G_{\mathrm{A}}^{(\pm)(0)}(\lambda, E)=\frac{h_{\mathrm{B} / F}\left(\xi_{\lambda}\right)}{E-\xi_{\lambda}-i \delta}, \quad \delta=+0, \tag{A43}\\
& G_{\mathrm{K}}^{(0)}(\lambda, E)=h_{\mathrm{B} / F}\left(\xi_{\lambda}\right)\left(G_{\mathrm{R}}^{(\mp)(0)}(\lambda, E)-G_{\mathrm{A}}^{(\mp)(0)}(\lambda, E)\right), \tag{A44}\\
& h_{\mathrm{B}}(E)=\operatorname{coth} \frac{1}{2} \beta E, \quad h_{\mathrm{F}}(E)=\tanh \frac{1}{2} \beta E . \tag{A45}
\end{align*}
$$

In the bosonic case ξ_{λ} is the energy of a boson; In the fermionic case ξ_{λ} is the energy of a fermion reckonked from the Fermi energy.
We have from A44):

$$
G_{\mathrm{K}}^{(0)}(\lambda, E)=-2 \pi i \times h_{\mathrm{B} / F}\left(\xi_{\lambda}\right) \times \delta\left(E-\xi_{\lambda}\right),
$$

so that (in accordance with eqs. (3.21) and (2.66) from [14], and A41))

$$
\begin{equation*}
G_{\mathrm{K}}^{(0)}(\lambda, E)=h_{\mathrm{B} / F}(E)\left(G_{\mathrm{R}}^{(\mp)(0)}(\lambda, E)-G_{\mathrm{A}}^{(\mp)(0)}(\lambda, E)\right) . \tag{A46}
\end{equation*}
$$

Let us now concentrate on the case of electrons. We are used to work with their Green functions averaged over the interaction with randomly placed impurities. After the averaging we get

$$
\begin{equation*}
\left\langle G_{\mathrm{K}}(\vec{p}, E)\right\rangle=h_{F}(E)\left(\left\langle G_{\mathrm{R}}(\vec{p}, E)\right\rangle-\left\langle G_{\mathrm{A}}(\vec{p}, E)\right\rangle\right) \tag{A47}
\end{equation*}
$$

where $G_{\mathrm{R} / \mathrm{A}}$ are given by A 10 .

4.7 Screening

In this section all the calculations are done for the case of small value of excitation momentum q. To consider the case of large q one should know the dependence of energy on momentum (which we actually never know). However, one can suppose $E(p)=\frac{p^{2}}{2 m}$ and do this (quite long) calculation. It must be just this is the way it is dgne in [27], pp. 158-163.

Figure 19: Screening in RPA approximation (wavy lines stand for bare interaction, dashed ones - for the impurity averaging lines composing diffuson). The possibility of connecting of bubbles with "external" green function lines shuold not be considered here, for it is taken into account when considering diagrams with higher order on interaction. Studying these higher order diagrams, one can detect some other (like RPA or the renormalization in Cooper channel) essential infinite sequence of diagrams. The same is true for the lines connecting different bubles.

Because of the long-range character of Coulomb interaction, it must not be considered in the first several orders of the perturbation theory. Instead, screening must be taken into account, which is technically done by summation of infinite number of diagrams.

The renormalized interaction matrix is defined by

$$
\begin{equation*}
\tilde{U}(q)=\frac{U(q)}{1-\complement_{p-q}^{p}}=\frac{U(q)}{1-\Pi(q) U(q)} . \tag{A48}
\end{equation*}
$$

The first and the second diagrams (their matrix $k k^{\prime}$ components) in Fig. 19 are respectively equal to $V \delta_{\vec{q}, \vec{q}^{\prime}} U(q) \tau_{k k^{\prime}}^{0}$ and

$$
-i U(q) U\left(q^{\prime}\right) \operatorname{Sp}\left[\frac{1}{V^{2}} \sum_{p, p^{\prime}} \int \frac{\mathrm{d} E}{2 \pi} \gamma^{k} \hat{G}\left(\vec{p}, \vec{p}^{\prime} ; E\right) \tilde{\gamma}^{k^{\prime}} \hat{G}\left(\vec{p}^{\prime}-\vec{q}^{\prime}, \vec{p}-\vec{q} ; E-\omega\right)\right]
$$

where matrices γ and $\tilde{\gamma}$ are given by eq. (33).
The polarization thus is given by

$$
\begin{equation*}
V \delta_{\vec{q}, \vec{q}^{\prime}} \Pi(q)=-i\left\langle\operatorname{Sp}\left[\frac{1}{V^{2}} \sum_{p, p^{\prime}} \int \frac{\mathrm{d} E}{2 \pi} \gamma^{k} \hat{G}\left(\vec{p}, \vec{p}^{\prime} ; E\right) \tilde{\gamma}^{k^{\prime}} \hat{G}\left(\vec{p}^{\prime}-\vec{q}^{\prime}, \vec{p}-\vec{q} ; E-\omega\right)\right]\right\rangle \tag{A49}
\end{equation*}
$$

From A49, A41 and A29 it follows that

$$
\begin{gather*}
V \delta_{\vec{q}, \vec{q}^{\prime}} \Pi_{\mathrm{R}}(q)=-\frac{i}{2} \frac{1}{V^{2}} \sum_{p, p^{\prime}} \int \frac{\mathrm{d} E}{2 \pi}\left\{D_{\vec{p}-\vec{q}, \overrightarrow{p^{\prime}}-\vec{q}^{\prime} ; E-\omega}^{\vec{p}, \vec{x}^{\prime}, E}\left(h_{E}-h_{E-\omega}\right)+\right. \\
\left.\left.\quad+V^{2} \delta_{\vec{p}, \vec{p}^{\prime}} \delta_{\vec{q}, \vec{q}^{\prime}}\left[G_{\mathrm{R}}(p) G_{\mathrm{R}}(p-q) h_{E-\omega}-G_{\mathrm{A}}(p) G_{\mathrm{A}}(p-q) h_{E}\right)\right]\right\} \tag{A50}\\
V \delta_{\vec{q}, \vec{q}^{\prime}} \Pi_{\mathrm{A}}(q)=-\frac{i}{2} \frac{1}{V^{2}} \sum_{p, p^{\prime}} \int \frac{\mathrm{d} E}{2 \pi}\left\{-D_{\vec{p}^{\prime}, \vec{p} ; E}^{\vec{p}^{\prime}-\vec{q}^{\prime}, \vec{p}-\vec{q} ; E-\omega}\left(h_{E}-h_{E-\omega}\right)+\right. \\
\left.\quad+V^{2} \delta_{\vec{p}, \vec{p}^{\prime}} \delta_{\vec{q}, \vec{q}^{\prime}}\left[G_{\mathrm{R}}(p) G_{\mathrm{R}}(p-q) h_{E}-G_{\mathrm{A}}(p) G_{\mathrm{A}}(p-q) h_{E-\omega}\right]\right\} \tag{A51}\\
V \delta_{\vec{q}, \vec{q}^{\prime}} \Pi_{\mathrm{K}}(q)=-\frac{i}{2} \frac{1}{V^{2}} \sum_{p, p^{\prime}} \int \frac{\mathrm{d} E}{2 \pi}\left\{\left[D_{\vec{p}-\vec{q}, \vec{q}, \vec{p}^{\prime}-\vec{q}^{\prime} ; E-\omega}+D_{\vec{p} \vec{p}^{\prime}, \vec{p} ; E}^{\vec{p}^{\prime}-\vec{q}^{\prime}, \vec{p}-\vec{q} ; E-\omega}\right]\left(1-h_{E} h_{E-\omega}\right)+\right. \\
\left.\quad+V^{2} \delta_{\vec{p}, \vec{p}^{\prime}} \delta_{\vec{q}, \vec{q}^{\prime}}\left[G_{\mathrm{R}}(p) G_{\mathrm{R}}(p-q)+G_{\mathrm{A}}(p) G_{\mathrm{A}}(p-q)\right] h_{E} h_{E-\omega}\right\} . \tag{A52}
\end{gather*}
$$

In A50 A52 D denotes diffuson \mathbb{D} together with the zeroth-order term \longrightarrow privated of impurity lines, see \longrightarrow A25 , A26 , and A27).

From the conservation of total number of particles one realizes that

$$
\begin{equation*}
\text { for } \vec{q}=0 \text { and } \forall \omega \Pi_{\mathrm{R} / A}(\vec{q}, \omega)=0 \tag{A53}
\end{equation*}
$$

From A50, A51 and A52 we realize that if one ignores effects due to the energy dependence of the density of states or in the equilibrium A41) holds exactly for the polarization and hence for the renormalized potential. In the equilibrium case using A85 one recovers (A45).

[^10]One can see that

$$
\operatorname{Supp}\left[1-h_{E+\omega / 2} h_{E-\omega / 2}\right]=\operatorname{Supp}\left[h_{E+\omega / 2}-h_{E-\omega / 2}\right]=\left\{E:|E| \lesssim \max \left(\frac{\tilde{T}}{2}, \frac{\omega}{2}\right)\right\}
$$

so that in A52 energy integration is limited in the zone where we can use A23). It also means that in A50), A51) and A52), we are free to

- when considering non-pole contributions: to substitute $h_{E} \leftrightarrow h_{E-\omega}$ and $h_{E} h_{E-\omega} \leftrightarrow 1$.
- when considering pole contributions having $\left(h_{E}-h_{E-\omega}\right)$ and ($1-h_{E} h_{E-\omega}$) multipliers: to substitute $\frac{1}{V} \sum_{\vec{p}_{\vec{n}}} \rightarrow \int \mathrm{~d} \xi \nu(\xi)$ with weak $\nu(\xi)$ dependence A23 and to integrate over ξ before integrating over energy.

So we see that (due to $\int \frac{\mathrm{d} E}{2 \pi}$) non-pole terms give zero contribution to A52.
Let us introduce a quantity

$$
\begin{align*}
& \tilde{\nu}(q)= \frac{i}{2} \frac{1}{V} \sum_{\vec{p}_{\vec{n}}} \int \frac{\mathrm{~d} E}{2 \pi} h_{E}\left[G_{\mathrm{R}}(p) G_{\mathrm{R}}(p-q)-G_{\mathrm{A}}(p) G_{\mathrm{A}}(p-q)\right] \in \Re . \\
& \text { If } \nu \text { is a constant, then } \tilde{\nu}(q)=\tilde{\nu}(0)=\nu_{0} \int \mathrm{~d} E h_{E}^{\prime} / 2=\nu_{0} \\
& \frac{1}{V^{2}} \sum_{p, p^{\prime}} D_{\vec{p}-\vec{q}, \vec{p}^{\prime}-\vec{q}^{\prime} ; E-\omega}^{\vec{p}, \vec{p}^{\prime} ; E}=2 \pi \nu_{0} \tilde{\tau}\left(\frac{1}{1-X(q)}-1\right) V \delta_{\vec{q}, \vec{q}^{\prime}}, \tag{A54}\\
& \frac{1}{V^{2}} \sum_{p, p^{\prime}} D_{\vec{p}^{\prime}, \vec{p} ; E}^{\vec{p}^{\prime}, \vec{p}^{\prime} \vec{p}-\vec{q} ; E-\omega}=2 \pi \nu_{0} \tilde{\tau}\left(\frac{1}{1-X^{*}(q)}-1\right) V \delta_{\vec{q}, \vec{q}^{\prime}}
\end{align*}
$$

where $X(q)$ is given by A65).

$$
\begin{array}{r}
\Pi_{\mathrm{R}}(q)=\Pi_{\mathrm{A}}^{*}(q)=-\frac{i \nu_{0} \tilde{\tau}}{2} \int \mathrm{~d} E \frac{X(q)\left(h_{E}-h_{E-\omega}\right)}{1-X(q)}-\tilde{\nu}(q), \\
\Pi_{\mathrm{K}}(q)=-\frac{i \nu_{0} \tilde{\tau}}{2} \int \mathrm{~d} E\left[\frac{X(q)}{1-X(q)}+\frac{X^{*}(q)}{1-X^{*}(q)}\right]\left(1-h_{E} h_{E-\omega}\right) \in \Im . \tag{A55}
\end{array}
$$

Note that in general case Π_{K} is not proportional to $\Pi_{R}-\Pi_{A}$, so that A41 does not hold.
The simpliest form the interaction has for large values of momentum $\sim p_{\mathrm{F}}$. From A67 we deduce that in this case

$$
\begin{equation*}
U_{\mathrm{K}}=0, \quad U_{\mathrm{R}}=U_{\mathrm{A}}=\frac{1}{\tilde{\nu}} \equiv \frac{\Lambda}{\nu_{0}}, \quad \tilde{\nu} \stackrel{\mathrm{df}}{=} \lim _{q \rightarrow \infty} \tilde{\nu}(q), \quad \Lambda \stackrel{\text { df }}{=} \frac{\nu_{0}}{\tilde{\nu}} . \tag{A56}
\end{equation*}
$$

When one does not take into account the ν_{E} - dependence, the polarization simplifies substantially:

$$
\begin{align*}
& \Pi_{\mathrm{R}}(q)=\Pi_{\mathrm{A}}^{*}(q)=-\nu_{0}\left[1+i \omega \tilde{\tau} \frac{X(q)}{1-X(q)}\right] \tag{A57}\\
& \Pi_{\mathrm{K}}(q)=-2 i \nu_{0} \tilde{\tau} \tilde{T}_{\omega}\left[\frac{X(q)}{1-X(q)}+\frac{X^{*}(q)}{1-X^{*}(q)}\right]
\end{align*}
$$

where

$$
\tilde{T} \equiv \tilde{T}_{0} ; \quad \tilde{T}_{\omega}=\tilde{T}_{-\omega} \equiv \tilde{T}(\omega)=\frac{1}{4} \int_{-\infty}^{\infty} \mathrm{d} E\left(1-h_{E} h_{E-\omega}\right)=\text { in equilibrium }=\frac{\omega}{2} \operatorname{coth} \frac{\omega}{2 T} \underset{\omega \rightarrow 0}{\longrightarrow} T
$$

From A57 for arbitary $X(q)$ we arrive to

$$
\forall \omega \in \mathbb{C} \quad \tilde{U}_{\mathrm{K}}=\frac{2 \tilde{T}_{\omega}}{\omega}\left(\tilde{U}_{\mathrm{R}}-\tilde{U}_{\mathrm{A}}\right) ; \quad \forall \omega \in \Re \quad \tilde{U}_{\mathrm{R}}(q)=\tilde{U}_{\mathrm{A}}^{*}(q)
$$

In $2 \mathrm{D} u^{-1}(q) \propto \nu_{0} q r_{\mathrm{B}}$; in $3 \mathrm{D} u^{-1}(q) \propto \nu_{0}\left(q r_{\mathrm{B}}\right)^{2}$. Usually $q \sim 1 / L$ so that in Dyson equation A48 one can neglect $u^{-1}(q)$. As a result, $U_{\mathrm{R} / \mathrm{A} / \mathrm{K}}$ do not depend on original, unscreened Coulomb potential (such situation is called universal limit).

In the diffusion approximation

$$
\begin{equation*}
\Pi_{\mathrm{R} / \mathrm{A}}(q)=-\frac{\nu_{0} D q^{2}}{D q^{2} \mp i \omega}, \quad \Pi_{\mathrm{K}}(q)=-\frac{4 \nu_{0} i D q^{2} \tilde{T}_{\omega}}{D^{2} q^{4}+\omega^{2}} \tag{A58}
\end{equation*}
$$

In 2D case, where $U(q)=2 \pi e^{2} / q$ we have

$$
\begin{gather*}
\tilde{U}_{\mathrm{R} / \mathrm{A}}(q)=\frac{2 \pi e^{2}}{q}-\frac{4 \pi^{2} e^{4} D \nu_{0}}{D q\left(q+2 \pi e^{2} \nu_{0}\right) \mp i \omega}=\frac{1}{\nu_{0}} \frac{q}{\frac{q}{2 \pi \nu_{0} e^{2}}+\frac{D q^{2}}{D q^{2} \mp i \omega}} \\
\tilde{U}_{\mathrm{K}}(q)=-\frac{16 i \pi^{2} e^{4} D \nu_{0} \tilde{T}_{\omega}}{D^{2} q^{2}\left(q+2 \pi e^{2} \nu_{0}\right)^{2}+\omega^{2}}=-\frac{4 \tilde{T}_{\omega}}{D q^{2}} \cdot \frac{i \nu_{0}}{\left(\frac{q}{2 \pi e^{2}}+\nu_{0}\right)^{2}+\left(\frac{\omega}{2 \pi e^{2} D q}\right)^{2}} \tag{A59}
\end{gather*}
$$

In $2 \mathrm{D} \frac{1}{2 \pi e^{2} \nu_{0}} \sim \frac{\pi}{e^{2} \nu_{0}}=r_{\mathrm{B}}=$ Bohr radius.
Like in [28], we want to neglect $\frac{q}{2 \pi e^{2}}$ in the denominator of A59). We can do it in case

$$
\begin{equation*}
\omega \ll D q / r_{\mathrm{B}} \ll D / r_{\mathrm{B}}^{2} \tag{A60}
\end{equation*}
$$

and obtain ${ }^{[17}$

$$
\begin{equation*}
U_{\mathrm{R} / \mathrm{A}}(q) \approx \frac{1}{\nu_{0}}\left(1 \mp \frac{i \omega}{D q^{2}}\right), \quad \tilde{U}_{\mathrm{K}}(q) \approx \frac{-4 i \tilde{T}_{\omega}}{\nu_{0} D q^{2}} . \tag{A61}
\end{equation*}
$$

The condition A60 holds in the diffusion regime, when $D q^{2} \sim|\omega| \ll 1 / \tau$.
Let us now go out of the diffusion approximation: still $q \ll p_{\mathrm{F}}$ but $q l \gg 1$. Then

$$
\Pi_{\mathrm{R} / \mathrm{A}}(q)=-\nu_{0}\left[1 \pm \frac{i \omega \tau}{l q}\right], \quad \Pi_{\mathrm{K}}(q)=-\frac{4 i \nu_{0} \tau}{l q} \tilde{T}_{\omega},
$$

so that

$$
\begin{equation*}
\tilde{U_{\mathrm{R} / \mathrm{A}}(q)}=\frac{1}{\nu_{0}\left(1 \pm \frac{i \omega \tau}{l q}\right)}, \quad \tilde{U_{\mathrm{K}}}(q)=\frac{1}{\nu_{0}} \frac{4 i \tilde{T}_{\omega} \tau}{l q} \frac{1}{1+\left(\frac{\omega \tau}{l q}\right)^{2}} . \tag{A62}
\end{equation*}
$$

From A65), 44, , A61), A62 and A67) one concludes that for $D q \gg|\omega|$ the potential does not depend on q.

4.8 Other formulas

In this subsection we use the following notations:

$$
\begin{gather*}
\forall \vec{a}, \vec{b} \in \mathbb{C}^{d} \quad \vec{a} \circ \vec{b} \equiv\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{d} b_{d}\right)^{T}, \quad \vec{a}(\vec{b} \circ \vec{c})=(\vec{a} \circ \vec{b}) \vec{c}, \tag{A63}\\
\vec{a} / \vec{b} \equiv\left(a_{1} / b_{1}, a_{2} / b_{2}, \ldots, a_{d} / b_{d}\right)^{T} .
\end{gather*}
$$

In d dimensions we have:

$$
\begin{equation*}
\int \frac{\mathrm{d} \Omega}{\Omega_{0}} n_{i} n_{j}=\frac{\delta_{i j}}{d} . \tag{A64}
\end{equation*}
$$

Let us introduce quantity

$$
\begin{equation*}
X\left(q ; E, E^{\prime}\right) \stackrel{\mathrm{df}}{=} \frac{1}{2 \pi \nu_{0} \tilde{\tau}} \frac{1}{V} \sum_{\vec{n}} G_{\mathrm{R}}\left(\vec{p}_{\vec{n}}, E\right) G_{\mathrm{A}}\left(\vec{p}_{\vec{n}}-\vec{q}_{\vec{m}}, E^{\prime}\right), \quad X(q) \equiv X(\vec{q}, \omega)=X(q ; E, E-\omega) \tag{A65}
\end{equation*}
$$

From A15 $X(\overrightarrow{0}, 0)=1$. For $q \ll p_{F}$:

$$
\begin{equation*}
\text { in 2D } X(\vec{q}, \omega)=\frac{1}{\sqrt{l^{2} q^{2}-(i \pm \omega \tau)^{2}}}, \text { in 3D } X(\vec{q}, \omega)=\frac{1}{2 i l q} \log \frac{1-i \omega \tau+i l q}{1-i \omega \tau-i l q} \tag{A66}
\end{equation*}
$$

The asymptotic for $q \gtrsim p_{F}$ depends on the particular dispersion law, but generally $X(\vec{q}, \omega)$ must decrease while q enlarges:

$$
\begin{equation*}
\lim _{q \rightarrow \infty} X(\vec{q}, \omega)=0 . \tag{A67}
\end{equation*}
$$

In the diffusion approximation using ${ }^{18}$ A15 , A23 and A22 we have

$$
\begin{gather*}
X\left(\vec{q} ; E, E^{\prime}\right)=1-\tau_{\epsilon} \tau_{0} / \tilde{\tau} \times\left[D_{\epsilon} q^{2}-i \omega\right] \approx_{x \rightarrow 0} 1-\tau\left(D q^{2}-i \omega\right), \quad \epsilon=\frac{E+E^{\prime}}{2}, \\
\nu(\xi) \approx \nu_{0}(1+x \xi), \quad \tau_{E} \equiv \tau(E) \approx \tau_{0}(1-x E), \quad l_{E}=v \tau_{E}, \quad D_{E}=\frac{l_{2}^{2}}{d \tau_{E}} . \tag{A68}
\end{gather*}
$$

Note that E-dependent corrections of (A68) make sence if (in case of cooperon/diffuson) we are near enough to the pole. More precisely, a condition $\omega\left(\omega+3 D_{0} q^{2}\right) \tau_{0} \ll x \epsilon\left[2 D_{0} q^{2}-i \omega\right]$ must hold; otherwise we go under the precesion of the diffusion approximation. In particular, these corrections are important when $D q^{2} \sim \omega \ll x \epsilon / \tau_{0}$.

The result A68) is consistent with the general requirement: cooperon's diffusion coefficient is a symmetric function of E and E^{\prime}; this becomes clear if one considers cooperon plus its complex conjugate (which should certainly be a real quantity).

[^11]The expression for the current of arbitary particles and its operator with charge e in gauge with scalar potential $=0$ (see eqs. (115.4) and (115.6) from [29]):

$$
\begin{gather*}
\vec{j}(x)=\frac{i e \hbar}{2 m}\left[\left(\nabla \psi^{*}(x)\right) \psi(x)-\psi^{*}(x)(\nabla \psi(x))\right]-\frac{e^{2}}{m c} \vec{A}(x) \psi^{*}(x) \psi(x)+\frac{\mu c}{s} \operatorname{rot}\left[\psi^{*}(x) \hat{\vec{s}} \psi(x)\right] \tag{A69}\\
\vec{j}_{a b}(x)=\frac{i e \hbar}{2 m}\left[\left(\nabla \psi_{a}^{*}(x)\right) \psi_{b}(x)-\psi_{a}^{*}(x)\left(\nabla \psi_{b}(x)\right)\right]- \tag{A70}\\
\frac{e^{2}}{m c} \vec{A}(x) \psi_{a}^{*}(x) \psi_{b}(x)+\frac{\mu c}{s} \operatorname{rot}\left[\psi_{a}^{*}(x) \hat{\vec{s}} \psi_{b}(x)\right]
\end{gather*}
$$

Due to the application of a constant vector potential Green function changes like (see [30])

$$
\begin{equation*}
G(\vec{r}, \vec{A})=G(\vec{r}, \vec{A}=0) e^{i e \vec{A} \vec{r}} \tag{A71}
\end{equation*}
$$

The density of states for systems with no interactions between the electrons:

$$
\begin{equation*}
\text { in 1D } \nu_{0}=\frac{m}{2 \pi p_{\mathrm{F}}}, \text { in 2D } \nu_{0}=\frac{m}{2 \pi \hbar}, \text { in } 3 \mathrm{D} \nu_{0}=\frac{m p_{\mathrm{F}}}{2 \pi^{2} \hbar^{2}}, \tag{A72}
\end{equation*}
$$

Poisson formula:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \delta(x-n)=\sum_{m \in \mathbb{Z}} e^{2 \pi i m x} \tag{A73}
\end{equation*}
$$

From A73 we get:

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} f(n+\xi)=\sum_{m \in \mathbb{Z}} e^{-2 \pi i m \xi} \times \int e^{2 \pi i m x} f(x) \mathrm{d} x \tag{A74}
\end{equation*}
$$

Using A74, we arrive to a useful relation:

$$
\begin{align*}
\frac{1}{V} \sum_{\vec{n} \in \mathbb{Z}^{d}} f\left(\vec{p}_{\vec{n}}-2 e \vec{A}\right)= & \sum_{\vec{n} \in \mathbb{Z}^{d}} \exp \left[2 \pi i \vec{n} \frac{\vec{\Phi}}{\Phi_{0}} \frac{e}{|e|}\right] \times \int \frac{\mathrm{d}^{d} p}{(2 \pi)^{d}} e^{i \vec{p}(\vec{n} \circ \vec{L})} f(\vec{p}) \tag{A75}\\
& \vec{L}=\left(L_{x}, L_{y}, \ldots\right)^{T}, \quad \vec{p}_{\vec{n}}=2 \pi \vec{n} / \vec{L}, \quad \vec{\Phi}=\vec{A} \circ \vec{L}, \quad \Phi_{0}=\pi /|e|
\end{align*}
$$

where the circle in $(\vec{n} \circ \vec{L})$ and $\vec{A} \circ \vec{L}$ denotes component multiplication of vectors, see A63.

$$
\begin{align*}
& \int_{-\infty}^{\infty} e^{i \vec{p} \vec{z}}(2 \vec{p}-\vec{q})_{\alpha \beta} \exp \left[-p^{2} x^{2}-y^{2}(\vec{p}-\vec{q})^{2}\right] \mathrm{d}^{2} p= \tag{A76}\\
& \quad \pi \frac{2\left(x^{2}+y^{2}\right) \delta_{\alpha \beta}+\left[\vec{q}\left(x^{2}-y^{2}\right)-i \vec{z}\right]_{\alpha \beta}}{\left(x^{2}+y^{2}\right)^{3}} \exp \left[-\frac{x^{2} y^{2} q^{2}+z^{2} / 4}{x^{2}+y^{2}}\right] \exp \left[\frac{i y^{2} \vec{z} \vec{q}}{x^{2}+y^{2}}\right]= \\
& \quad \frac{2 \pi}{\tau_{1}^{2}} \exp \left[-\frac{\left(\tau_{1} \vec{q}-i \vec{z}\right)^{2}}{4 \tau_{1}}\right] \exp \left[-\frac{z^{2}}{2 \tau_{1}}\right] \times\left(\delta_{\alpha \beta}+\frac{1}{2 \tau_{1}}\left[\tau_{2} \vec{q}-i \vec{z}\right]_{\alpha \beta}\right) \exp \left[\frac{\tau_{2}^{2} q^{2}-2 i \tau_{2} \vec{z} \vec{q}}{4 \tau_{1}}\right]
\end{align*}
$$

where

$$
\begin{gather*}
x^{2}+y^{2}=\tau_{1}, \quad x^{2}-y^{2}=\tau_{2}, \quad x^{2}=\frac{\tau_{1}+\tau_{2}}{2}, \quad y^{2}=\frac{\tau_{1}-\tau_{2}}{2} \tag{A77}\\
\int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \vec{k} \exp \left[i(\vec{L} \circ \vec{m}) \vec{k}-D t k^{2}\right]=\frac{i \vec{L} \circ \vec{m}}{2 D t}(4 \pi D t)^{-d / 2} \exp \left[-\frac{(\vec{L} \circ \vec{m})^{2}}{4 D t}\right] \tag{A78}\\
\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \exp \left[i(\vec{L} \circ \vec{m}) \vec{k}-D t k^{2}\right]=(4 \pi D t)^{-d / 2} \exp \left[-\frac{(\vec{L} \circ \vec{m})^{2}}{4 D t}\right]
\end{gather*}
$$

We use some definitions in Heisenberg representation from [22 (however, changing signs in them order to have correspondence with [5]):

$$
\begin{align*}
G_{\mathrm{R}}^{(\pm)}\left(x, x^{\prime}\right) & \equiv-K_{\mathrm{R}}^{(\pm)}\left(x, x^{\prime}\right)=-i \theta\left(t-t^{\prime}\right)\left\langle\left[\psi(x), \psi^{\dagger}\left(x^{\prime}\right)\right]_{ \pm}\right\rangle \\
G_{\mathrm{A}}^{(\pm)}\left(x, x^{\prime}\right) & \equiv-K_{\mathrm{A}}^{(\pm)}\left(x, x^{\prime}\right)=i \theta\left(t^{\prime}-t\right)\left\langle\left[\psi(x), \psi^{\dagger}\left(x^{\prime}\right)\right]_{ \pm}\right\rangle \tag{A79}\\
G_{\mathrm{R} / \mathrm{A}}\left(x, x^{\prime}\right) & \equiv-K_{\mathrm{R} / \mathrm{A}}\left(x, x^{\prime}\right)=\mp i \theta\left[\pm\left(t-t^{\prime}\right)\right]\left\langle\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right\rangle, \\
G\left(x, x^{\prime}\right) & \equiv-K_{\mathrm{C}}\left(x, x^{\prime}\right) \overline{\overline{3} 3}-i\left\langle T\left[\psi(x) \psi^{\dagger}\left(x^{\prime}\right)\right]\right\rangle
\end{align*}
$$

$$
\begin{equation*}
G_{\mathrm{R} / \mathrm{A}}^{(+)}+G_{\mathrm{R} / \mathrm{A}}^{(-)}=2 \tilde{G_{\mathrm{R} / \mathrm{A}}}, \quad G_{\mathrm{C}}=\tilde{G_{\mathrm{R}}}-\eta \tilde{G_{\mathrm{A}}}, \tag{A80}
\end{equation*}
$$

where $\eta= \pm 1$ for the case of bosons and fermions respectively.

$$
\begin{equation*}
\text { In energy representation } \quad K_{\mathrm{R} / \mathrm{A}}(E)=-\frac{1}{2 \pi} G_{\mathrm{R} / \mathrm{A}}(E) \text {. } \tag{A81}
\end{equation*}
$$

For fermions, $G_{\mathrm{R} / \mathrm{A}} \equiv G_{\mathrm{R} / \mathrm{A}}^{(+)}$(and for bosons $G_{\mathrm{R} / \mathrm{A}} \equiv G_{\mathrm{R} / \mathrm{A}}^{(-)}$) obey the simpliest equations, and this must be the reason why just they are usually considered, see (22$] 6.2-4$). In equilibrium any Green function can be obtained from any other one using spectral function, see 22 .

From [22] we have in case of non-interacting fermions in equilibrium:

$$
\begin{equation*}
G_{\mathrm{R} / \mathrm{A}}^{(+)(0)}(\lambda)=\frac{1}{E-\epsilon(\lambda) \pm i \delta}, \quad G_{\mathrm{R} / \mathrm{A}}^{(0)}(\lambda)=\frac{1-n_{\mathrm{F}}}{E-\epsilon(\lambda) \pm i \delta}, \quad \delta=+0 . \tag{A82}
\end{equation*}
$$

One can easilly do also the case of non-interacting bosons in equilibrium:

$$
\begin{equation*}
G_{\mathrm{R} / \mathrm{A}}^{(-)(0)}(\lambda)=\frac{1}{E-\epsilon(\lambda) \pm i \delta}, \quad G_{\mathrm{R} / \mathrm{A}}^{(0)}(\lambda)=\frac{1+n_{\mathrm{B}}}{E-\epsilon(\lambda) \pm i \delta}, \quad \delta=+0 . \tag{A83}
\end{equation*}
$$

In these relations $n_{\mathrm{B} / F}=\frac{1}{e^{\epsilon / T} \mp 1}$ are Bose and Fermi distributions. Moreover, for arbitrary h_{E} (i.e. also for out-of-equilibrium systems):

$$
\begin{equation*}
\forall \omega \quad \int_{-\infty}^{+\infty} \mathrm{d} E\left(h_{E}-h_{E-\omega}\right)=2 \omega . \tag{A84}
\end{equation*}
$$

A useful identity:

$$
\begin{align*}
& \forall E, \omega, T \quad\left(\tanh \frac{E}{2 T}-\tanh \frac{E-\omega}{2 T}\right) \operatorname{coth} \frac{\omega}{2 T}=1-\tanh \frac{E}{2 T} \tanh \frac{E-\omega}{2 T} . \tag{A85}\\
& \int_{-\infty}^{\infty} \frac{\mathrm{d} p}{2 \pi} \frac{\sin (p n L)}{\left[L_{\omega}^{-2}+(p-q)^{2}\right]\left[p^{2}+\delta^{2}\right]}= \\
& \\
& \frac{2 e^{-n L \delta} L_{\omega}^{4} q-e^{-n L / L_{\omega}} L_{\omega}^{3}\left\{2 L_{\omega} q \cos (q n L)+\left[1-L_{\omega}^{2}\left(q^{2}+\delta^{2}\right)\right] \sin (q n L)\right\}}{2\left[1+2 L_{\omega}^{2}\left(q^{2}-\delta^{2}\right)+L_{\omega}^{4}\left(q^{2}+\delta^{2}\right)^{2}\right]} .
\end{align*}
$$

The last equation leads to:

$$
\begin{equation*}
\text { v.p. } \int_{-\infty}^{\infty} \frac{\mathrm{d} k}{2 \pi} \frac{\sin k n L}{(k+q)^{2}\left(k^{2}+L_{\omega}^{-2}\right)}=q \frac{1-\exp \left[-n L / L_{\omega}\right]}{\left(q^{2}+L_{\omega}^{-2}\right)^{2}}, q=2 \pi n / L, n \in \mathbb{Z}, \Re L_{\omega}>0 \tag{A86}
\end{equation*}
$$

Список литературы

[1] Oleg Chalaev. Home page: http://chalaev.com.
[2] Yoseph Imry. Introduction to Mesoscopic Physics. Oxford University Press, New York, 2002. .
[3] M. Bütiker, Yoseph Imry, and Rolf Landauer. Josephson behavior in small normal one-dimensional rings. Phys. Lett., 96A(7):365, July 1983.
[4] Eberhard. K. Riedel and Felix von Oppen. Mesoscopic persistent current in small rings. Phys. Rev. B, 47(23):15449, Jun 1993.
[5] Алексей Алексеевич Абрикосов, Лев Петрович Горьков, and Игорь Ехильевич Дзялошинский. Methods of quantum field theory in statistical physics. Dobrosvet (Moscow), 2nd Russian edition, 1998. Abrikosov, Gor’kov, Dzyaloshinskii, ; Numbering of formulas and, apparently, figures is the same, as in English edition.
[6] Boris L. Altshuler and A. G. Aronov. Electron-electron interaction in disordered systems. In A. L. Efros and M. Pollak, editors, Electron-electron interaction in disordered conductors. Elsevier, 1985. .
[7] Oleg Chalaev. Public version of unofficial notes.
[8] Giuliano Benenti, Xavier Waintal, and Jean-Louis Pichard. A new quantum phase in two dimensions. Rencontres de Moriond, 1999. cond-mat/9905028.
[9] Ho-Fai Cheung, Eberhard K. Riedel, and Yuval Gefen. Persistent currents in mesoscopic rings and cylinders. Phys. Rev. Lett., 62:587, Jan 1989.
[10] Vinay Ambegaokar and Ulrich Eckern. Coherence and persistent currents in mesoscopic rings. Phys. Rev. Lett., 65:381, 1990.
[11] V. E. Kravtsov and V. I. Yudson. Direct current in mesoscopic rings induced by high-frequency electromagnetic field. Phys. Rev. Lett., 70(2):210, Jan 1993.
[12] Oleg L. Chalaev and V. E. Kravtsov. Persistent current in mesoscopic rings. was in preparation untli I was at SISSA. The aim was to present the calculation of the triplet channel as well - see [31]; most probably, will never be published.
[13] L. V. Keldysh. ЖЭТФ, 47:1515, 1964. Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].
[14] Jørgen Rammer and H. Smith. Quantum field theoretical methods in transport theory of metals. Rev. Mod. Phys., 58:323, 1986.
[15] Vladimir I. Yudson, Evgeni Kanzieper, and Vladimir E. Kravtsov. Limits of the dynamical approach to the nonlinear response of mesoscopic systems. Phys. Rev. B, 64:045310, 2001. cond-mat/0012200 Статья, где BK (и сотоварищи) объясняет, как можно считать проводимость по формуле Ландауера в технике Келдыша.
[16] Gabor Zala, Boris N. Narozhny, and Igor L. Aleiner. Interaction corrections at intermediate temperatures: I. longitudinal conductivity and kinetic equation. Phys. Rev. B, 64(21):214204, December 2001. cond-mat/0105406; see also Proceedings of the International School of Physics in Varenna, Cource CLI.
[17] H. Pothier, S. Guéron, Norman O. Birge, D. Esteve, and M. H. Devoret. Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett., 79(18):3490-3493, Nov 1997.
[18] S. De Franceschi, R. Hanson, W. G. van der Wiel, J. M. Elzerman, J. J. Wijpkema, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven. Kondo effect out of equilibrium in a mesoscopic device. arXiv:cond-mat/0203146, Mar 2002.
[19] Vladimir Yudson. unpublished; источник информации - BK.
[20] Л. Д. Ландау and Е. М. Лифшиц. Статистическая физика. Часть 1., volume 5 of Theoretical physics. Наука, 1976. Landau \& Lifshitz V - "Statistical physics part 1".
[21] Фёдор Максимилианович Куни. Статистическая физика и термодинамика. Наука, 1981. .
[22] В. Л. Бонч-Бруевич аnd С. В. Тябликов. Метод функиий Грина в статистической механике. гос. изд. физ.-мат. лит., Москва, 1962. V. L. Bonch-Bruevich and S. V. Tyablikov, "The Green function method in statistical mechanics" .
[23] Boris L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky. Effects of electron-electron collisions with small energy transfers on quantum localization. Journal of Physics C: Solid State Physics, 15:7367-7386, 1982. .
[24] A. D. Mirlin. unpublished.
[25] Алексей Алексеевич Абрикосов. Основы теории металлов. Наука, 1987. A. A. Abrikosov "Fundamentals of the Theory of Metals".
[26] Oleg Chalaev and Vladimir E. Kravtsov. Aharonov-Bohm magnetization of mesoscopic rings caused by inelastic relaxation. Phys. Rev. Lett., 89:176601, 2002. cond-mat/0204176.
[27] Alexander L. Fetter and John Dirk Walecka. Quantum theory of many-particle systems. McGraw-Hill, San Francisco, 1971.
[28] Boris L. Altshuler, Arkadi G. Aronov, and P. Lee. Interaction effects in disordered Fermi systems in 2 dimensions. Phys. Rev. Lett., 44(19):1288-1291, 1980. Correction to the conductivity taking into account interaction.
[29] Л. Д. Ландау and Е. М. Лифшиц. Квантовая механика (нерелятивистская теория), volume 3 of Theoretical physics. "Наука", 4th Russian edition, 1989. Landau \& Lifshitz, "Quantum mechanics - non-relativistic theory".
[30] Barry R. Holstein. Topics in advanced quantum mechanics. Addison-Wesley, Redwood City, Calif., 1992.
[31] Oleg Chalaev. Nonequilibrium persistent currents in mesoscopic disordered systems. PhD thesis, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy, 2003. The thesis together with the presentation are available on my homepage [1].

[^0]: ${ }^{1}$ Considering periodic boundary conditions is convinient from the theoretical point of view.
 ${ }^{2}$ The program is now mostly obsolete. Its new version is completely rewritten on maxima and strongly extended. You can find it (together with examples and instructions for usage) on my homepage 1]. Note also that the original (24.10.2003) version of this document is permanently available on the SISSA CM page.

[^1]: ${ }^{3}$ Out of equilibrium this is not correct; Taking interaction into accout can drastically change the value of a physical quantity. An example is the current studied in sec. 3.2

[^2]: ${ }^{4}$ To see this one should make in $\sqrt{17}$ a substitution $\vec{p}_{k} \rightarrow \vec{p}_{k}-\vec{q}_{n}$.
 ${ }^{5}$ The multiplier $=1 / 4$ appears due to this substitution.

[^3]: ${ }^{6}$ This statement is true for the grand-canonical ensemble.

[^4]: ${ }^{7}$ Note that Sp is taken also on spin degree of freedom in $\sqrt{32}$.

[^5]: ${ }^{8}$ Eq. 43 becomes clear from A84.

[^6]: ${ }^{9}$ This section only illustrates, but does not prove the result 52. The proof is written in [6]; it requests using Dyson equation in terms of vertex parts [5].

[^7]: ${ }^{10}$ so that, according to A68, also $l_{E}=$ const and $D_{E}=$ const.

[^8]: ${ }^{11}$ See sec. 3.1 for the definition.
 ${ }^{12}$ See 21 for the discussion about more general case.

[^9]: ${ }^{15}$ An example where one need to introduce see A23] - like dependence is thermoelectric effect, see- [25], p. 103.

[^10]: ${ }^{16}$ One can think about an analogy: in the 2×2 matrix Green function they stand on diagonal, so they know only about diagonal elements of the density matrix.

[^11]: ${ }^{17}$ Note that A61 is correct in arbitary dimension.
 ${ }^{18}$ To obtain A68, we at first expanded $G_{\mathrm{A}}(\vec{p}-\vec{q}, E-\omega)$ by \vec{q}, ω; then used A15 for the zeroth-order term, then substituted A23 and at last integrated by $\mathrm{d} \xi \frac{\mathrm{d} \Omega}{\Omega_{0}}$.

